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Abstract

For a class of interacting particle systems on a countable set, including the

so-called linear systems, self-duality has proved to be a strong tool to show

longtime convergence to an invariant state νθ from a constant initial state

θ. This convergence was extended to a class of translation invariant random

initial states through the Liggett-Spitzer coupling.

Here we drop the assumption of translation invariance of the initial state.

Instead, we assume only that there exists a global density θ in a certain L
2-

sense. We use the duality to carry out a comparison argument and show

convergence to the same νθ as above. We treat some examples in more detail:

the parabolic Anderson model, the mutually catalytic branching model, and

the smoothing and potlatch processes.

1 Introduction

Our purpose here is to present some new weak convergence results for interacting
particle systems that enjoy the “linear systems” type duality as described in Chapter
IX of Liggett (1985). This particular form of duality was first exploited by Spitzer
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(1981) in his study of the smoothing, potlatch, and coupled random walk processes.
For this class of processes, duality and a simple martingale argument prove weak
convergence of the process from constant initial states. To obtain convergence from
nonconstant initial states, a coupling method introduced in Liggett and Spitzer
(1981) can be used. The coupling method is not duality based.

The Liggett–Spitzer coupling method generally requires that the law of the ini-
tial state be translation invariant. We show here, for interacting particle systems
with the linear systems type duality, that duality itself can be used to prove weak
convergence of the process from some nonconstant initial states. Translation in-
variance of the initial state is not needed, nor is it necessary to assume translation
invariance of the basic mechanism defining the process. We will apply our method
to three examples: the parabolic Anderson (or linear random potential) model con-
sidered in Shiga (1992), the mutually catalytic branching process introduced in
Dawson and Perkins (1998), and the smoothing and potlatch processes.

This work originated in an attempt to extend Theorem 1.4 in Dawson and
Perkins (1998) to nonconstant initial states. Since the Liggett–Spitzer coupling
does not seem to apply to the mutually catalytic branching process, another method
was needed. We found that the model’s self–duality property could be used. This
duality is similar to the linear systems duality, and we found that our method could
also be applied in the linear systems setting.

The heart of our proofs is a convergence in probability statement for the dual
process in a fairly general setting (Theorem 3.1). Since this proposition looks rather
abstract without some motivation, we start in Section 2 by giving a direct proof of
convergence for the parabolic Anderson model, which is the simplest of the models
we treat. We then present the general convergence result in Section 3, and use it to
obtain convergence results for the mutually catalytic branching process in Section
4 and the smoothing and potlatch processes in Section 5. We note that the method
actually gives more than convergence to an equilibrium state from a broad class
of initial distributions—it shows that if we pick the intial state from this initial
distribution, the resulting random probability measure on the state space converges
in probability to the equilibrium measure as time tends to infinity. This extension
is used in Cox and Klenke (1998) to show that for a class of processes (including
the mutually catalytic branching model in the recurrent setting) one obtains a.s.
accumulation at all points in the support of the equilibrium measure.

As will become clear when we give the details of our first example, our method
does not provide any new information on the specific nature of a given weak limit.
Depending on the parameters involved, such a limit may or may not be “degenerate”
(e.g., concentrated on the zero configuration). It is a fundamental problem to
determine which is the case. What we show, roughly speaking, is that if two initial
states have the same spatial density, measured in an appropriate way, and the
process starting in one of these states has a weak limit, then the process starting in
the other state has the same weak limit.

We introduce now some notation that will be common to our examples. Let S
be a countable set, and let p(i, j), i, j ∈ S be a (discrete time) irreducible Markov
chain transition matrix. We assume p is doubly stochastic so that p̃(i, j) = p(j, i)
is also a transition matrix. Define the continuous time kernel pt, t ≥ 0 by

pt(i, j) = e−t
∞
∑

n=0

tn

n!
p(n)(i, j), (1.1)

where p(n) is the nth iterate of p. For φ : S → [0,∞), define Ptφ and φPt by
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Ptφ(i) =
∑

j∈S pt(i, j)φ(j) and φPt(j) =
∑

j∈S φ(i)pt(i, j). For φ, ψ : S → [0,∞),

let 〈φ, ψ〉 =
∑

i∈S φ(i)ψ(i). For θ ∈ [0,∞) let θ ∈ [0,∞)S be defined by θ(j) ≡ θ.
Let XF be the set of x ∈ [0,∞)S such that x(j) = 0 for all but finitely many
j ∈ S, and let Xf denote the set of those x ∈ [0,∞)S such that 〈x,1〉 <∞. Unless
otherwise noted, all sums will be taken over S. Finally, I denotes the identity

matrix, L denotes law,
d
= denotes equality in distribution, and ⇒ denotes weak

convergence of probability measures.

2 Parabolic Anderson Model

We consider an interacting diffusion xt, taking values in [0,∞)S , called the parabolic
Anderson model in Shiga (1992). The evolution of xt is determined by the equation

dxt(i) = (p− I)xt(i) dt+ cxt(i) dBt(i), i ∈ S. (2.1)

Here c is a fixed positive constant and {Bt(i), i ∈ S} is a collection of independent
one–dimensional Brownian motions. To define the state space X , let γ ∈ [0,∞)S be
a strictly positive, summable reference measure satisfying, for some finite constant
Γ,

γp ≤ Γγ. (2.2)

There is always such a reference measure (see Liggett and Spitzer (1981)). Let
X = Xγ = {x ∈ [0,∞)S : 〈x, γ〉 < ∞}. We endow X with the topology generated
by componentwise convergence. By results of Shiga and Shimizu (1980), for each
starting point, x0 ∈ X , there is a unique strong solution xt of (2.1) taking values
in X . We let Px0 denote its law on C([0,∞), X). Note that (xt) is linear in the
following sense: If (x1

t ) and (x2
t ) are solutions of (2.1) with the same (Bt), and a

and b are constants, then

x3
t = x1

t + x2
t (2.3)

is also a solution of (2.1).
As noted in (2.5) of Cox, Greven and Shiga (1995), for x0 ∈ XF , Ex0 [xt(i)] =

Ptx0(i), and

Ex0 [xt(i)xt(j)]

= Ptx0(i)Ptx0(j) + c2
∫ t

0

∑

k

pt−r(i, k)pt−r(j, k)E
x0 [x2

r(k)] dr. (2.4)

It follows that

Ex0 [〈xt,1〉
2] = 〈x0,1〉

2 + c2
∫ t

0

Ex0 [〈x2
r ,1〉] dr. (2.5)

By standard arguments and Gronwall’s inequality, for all x0 ∈ Xf and t ≥ 0,

Ex0[〈xt,1〉
2] <∞. (2.6)

It is easy to see from (2.1) and (2.6) that for x0 ∈ Xf , 〈xt,1〉 is a continuous,
square-integrable martingale.
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Let x̃t denote the process determined by (2.1), but with p̃ instead of p. Then xt
and x̃t are dual in the following sense. Given initial states x0 ∈ X and x̃0 ∈ XF ,

〈xt, x̃0〉
d
= 〈x0, x̃t〉. (2.7)

A proof of this fact follows exactly as in Theorem IX.1.25 in Liggett (1985).
Suppose now that θ > 0 is fixed, and xθt is the parabolic Anderson model with

initial state xθ0 = θ. Then, for any φ ∈ XF , (2.7) implies that

〈xθt , φ〉
d
= θ〈1, x̃t〉, x̃0 = φ. (2.8)

The right side of (2.8) is a nonnegative martingale, and hence converges a.s. as
t → ∞. Therefore, the left side of (2.8) must converge as t → ∞. On account of
this, there is a probability measure νθ on X such that

L[xθ

t ] ⇒ νθ as t→ ∞. (2.9)

In particular,

Eφ[e−θ〈1,x̃t〉] = E[e−〈xθ
t ,φ〉]

→

∫

e−〈x,φ〉 νθ(dx) as t→ ∞.
(2.10)

Note that by the linearity property (2.3), νθ(A) = ν1(θ
−1A).

In some cases, the limit νθ may be concentrated on the configuration which is
identically 0. In Remark 2.2 below we recall conditions which determine, in some
cases, whether or not this happens. Our goal is to show that convergence to νθ
holds for a large class of initial states with an appropriately defined spatial density
θ.

For θ ∈ [0,∞), define Mθ to be the collection of probability measures ν on X
such that

sup
k

∫

x2(k)dν(x) <∞, (2.11)

lim
t→∞

∫

(Ptx(k) − θ)2dν(x) = 0, k ∈ S. (2.12)

Suppose, for example, Pt is the semigroup of simple symmetric random walk on
Zd. If {x(k) : k ∈ Zd} are iid non-negative random variables with mean θ and finite
variance, then their law ν is in Mθ. However, there are a number of non-translation
invariant laws in Mθ. If x(k) = 1(k1 < 0) clearly δx ∈ M1/2. More generally, if

x ∈ [0,∞)Z
d

is bounded and the average value of x in a ball (Euclidean metric)
approaches θ as the radius approaches ∞, then it is not hard to show that δx ∈ Mθ.

Our main technical result is the following.

Proposition 2.1 Assume p is doubly stochastic. Let θ ∈ [0,∞) and let ν ∈ Mθ.
If x0 has law ν, and x̃0 ∈ XF , then

〈x0 − θ, x̃t〉 → 0 (2.13)

in ν ⊗ Px̃0-probability as t→ ∞.

Corollary 2.1 If S = Zd, p(i, j) = p(0, j − i), ν = L[x0] is translation invariant,
shift ergodic, and satisfies

∫

x(0) dν(x) = θ, then (2.13) holds.
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Proof. For N > 0 define xN0 (i) = x0(i) ∧N , and let θN =
∫

[x(0) ∧N ] dν(x). Then

〈x0 − θ, x̃t〉 = 〈x0 − xN0 , x̃t〉 + 〈xN0 − θN , x̃t〉 + 〈θN − θ, x̃t〉.

It is easy to see (Theorem 5.6 in Liggett 1973) that L[xN0 ] ∈ MθN , so that for each
N , 〈xN0 − θN , x̃t〉 → 0 in ν ⊗Px̃0-probability as t → ∞. On the other hand, letting
E denote expectation with respect to ν ⊗ Px̃0 ,

E[〈x0 − xN0 , x̃t〉] ≤

∫

x(0)1{x(0)>N} dν(x) 〈1, x̃0〉 → 0

and
E[〈θ − θN , x̃t〉] = (θ − θN ) 〈1, x̃0〉 → 0

as N → ∞. �

Let us see now what duality and (2.13) imply. Let x̃0 ∈ XF , and let x0 have
law ν which satisfies (2.13). By (2.7),

E[e−〈xt,x̃0〉] = Eν ⊗ Ex̃0 [e−〈x0,x̃t〉]

= Eν ⊗ Ex̃0 [e−〈x0−θ,x̃t〉 e−θ〈1,x̃t〉] .
(2.14)

By (2.13) e−〈x0−θ,x̃t〉 → 1 in Pν ⊗Px̃0 -probability as t→ ∞. Therefore, in view of
(2.10),

lim
t→∞

Eν [e−〈xt,φ〉] =

∫

e−〈x,φ〉 dνθ(x), (2.15)

and we have established the following.

Theorem 2.1 Assume that p is doubly stochastic, and either (i) L[x0] ∈ Mθ, or
(ii) S = Zd, p(i, j) = p(0, j − i), and L[x0] is translation invariant, shift ergodic,
and satisfies E[x0(0)] = θ. Then L[xt] ⇒ νθ as t→ ∞.

Remark 2.1 It is possible to formulate and prove a stronger type of convergence
than given above, which is used in Cox and Klenke (1998). We do this for the
mutually catalytic branching process in Theorem 4.1(a) below.

Remark 2.2 Suppose that S = Zd and p(i, j) = p(0, j − i). If the symmetrization
of p is transient, and c is sufficiently small, Theorem 1.1 of Shiga (1992) implies
that L[xt] ⇒ νθ for any initial law ν which is translation invariant, shift ergodic,
and satisfies

∫

x(0) dν(x) = θ. If the symmetrization of p is recurrent, Theorem 2
of Cox, Fleischmann and Greven (1996) implies that νθ = δ0, and that L[xt] ⇒ δ0
for any initial law ν which is translation invariant and satisfies

∫

x(0) dν(x) < ∞.
For information concerning the case when the symmetrization of p is transient and
c is large, see Theorem 1.2 in Shiga (1992).

Proof of Proposition 2.1. Recall that the total mass process 〈x̃t,1〉 is a continuous
square-integrable martingale. By (2.1) and (2.6), 〈x̃t,1〉 = 〈x̃0,1〉+

∑

iMt(i), where

Mt(i) = c

∫ t

0

x̃s(i)dBs(i)
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and the sum converges in L2. The Mt(i) are continuous, square-integrable orthog-
onal martingales, with

〈M(i)〉t = c2
∫ t

0

x̃2
s(i) ds.

The continuous martingale 〈x̃t,1〉 has integrable square function At =
∑

i〈M(i)〉t.
Since 〈x̃t,1〉 converges a.s. Px̃0 as t → ∞,

A∞ =
∑

i

〈M(i)〉∞

= c2
∫ ∞

0

∑

i

x̃s(i)
2 ds <∞ a.s. Px̃0 .

(2.16)

It is straightforward to check, by applying Itô’s formula to P̃t−sx̃s(i), that we
have the representation

x̃t(i) = P̃tx̃0(i) +

∫ t

0

∑

j

p̃t−s(i, j) dMs(j). (2.17)

Let x0 have law ν, let ∆ = x0 − θ, and set P = ν ⊗ Px̃0 . Since ν ∈ Mθ, C =
supi

∫

[∆(i)2]dν is finite. It follows easily that

sup
i,t

∫

P̃t∆(i)2dν ≤ C, (2.18)

and also that (E denotes expectation with respect to P)

E
[

∑

i

∫ t

0

P̃t−s∆(i)2x̃s(i)
2 ds

]

≤ C

∫ t

0

Ex̃0 [〈x̃s,1〉
2] ds <∞.

(2.19)

Consequently, letting

N t
s =

∑

i

∫ s

0

∆P̃t−r(i) dMr(i), s ≤ t, (2.20)

we have

〈∆, x̃t〉 = 〈∆, P̃tx̃0〉 +N t
t . (2.21)

Here, {N t
s, s ≤ t} is a continuous, square-integrable martingale under P, with square

variation function

〈N t〉s =

∫ s

0

∑

i

∆P̃t−r(i)
2 d〈M(i)〉r <∞ a.s. Px̃0 .

Here we have added x0 to the underlying filtration at time 0.
We are now ready to prove (2.13). It is straightforward to check that

∫

〈∆, P̃tx̃0〉
2dν =

∫

〈Pt∆, x̃0〉
2dν

=
∑

j,k

x̃0(j)x̃0(k)

∫

Pt∆(j)Pt∆(k) dν

≤

[

∑

j

x̃0(j)
(

∫

Pt∆(j)2 dν
)1/2

]2

.
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Using (2.12), (2.18), and the fact that x̃0 ∈ Xf , it follows that
∫

〈∆, P̃tx̃0〉
2dν → 0 as t→ ∞. (2.22)

The next step is to show that for all ε′ > 0,

lim
t→∞

P[〈N t〉t > ε′] = 0. (2.23)

To do this, we consider the expectation
∫

〈N t〉t dν =

∫ t

0

∑

i

∫

P̃t−r∆(i)2 dν d〈M(i)〉r

=
∑

i

∫ ∞

0

1{r<t}

∫

P̃t−r∆(i)2 dν d〈M(i)〉r .

We note that 1{r<t}

∫

P̃t−r∆(i)2 dν → 0 as t → ∞, and is bounded by C (by
(2.18)). Hence, on account of (2.16) and the bounded convergence theorem,

Px̃0

[

lim
t→∞

∫

〈N t〉t dν = 0
]

= 1. (2.24)

Therefore,

P[〈N t〉t > ε′] = Ex̃0

[

ν[〈N t〉t > ε′]
]

→ 0 (2.25)

as t→ ∞, which proves (2.23) .
By a standard stopping time argument for martingales, for any ε > 0,

P[|N t
t | > ε, 〈N t〉t ≤ ε3] ≤ ε. (2.26)

The claim (2.13) now follows from (2.21)– (2.23) and (2.26) (set ε′ = ε3). �

3 A Convergence Result for the Dual Process

The key step in the proof of the convergence to equilibrium for the parabolic Ander-
son model was the convergence in probability statement for the dual process given
in Proposition 2.1. As the argument leading to that conclusion applies in a num-
ber of different settings exhibiting a similar duality, we now prove a general result.
Recall that Pt is the continuous time transition matrix associated with a doubly
stochastic matrix p(i, j) on a countable set S. Let {Sn} be a sequence of finite sets
which increase to S as n → ∞. We endow the set [0,∞)S with the topology of
pointwise convergence.

Let {xt(i) : t ≥ 0, i ∈ S} be a right-continuous with left limits (RCLL) stochas-
tic process taking values in [0,∞)S , defined on some probability space (Ω,F ,Px).
Assume

Xt ≡ 〈xt,1〉 is a square-integrable RCLL martingale, (3.1)

and there is a family of RCLL L2-martingales {Mt(i), t ≥ 0, i ∈ S} such that, a.s.
for all i ∈ S and t ≥ 0,

xt(i) = Ptx0(i) +
∑

j

∫ t

0

Pt−s(i, j) dMs(j) = Ptx0(i) +
[

∫ t

0

Pt−s dMs

]

(i). (3.2)
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Here it is understood that the series in (3.2) converges in L2. For φ : S → R let

Qt(φ) =
∑

i,j

φ(i)φ(j)〈M(i),M(j)〉t, (3.3)

|Q|t(φ) =
∑

i,j

φ(i)φ(j)|〈M(i),M(j)〉|t, (3.4)

where |〈M(i),M(j)〉|t is the total variation of 〈M(i),M(j)〉 up to time t. We will
also use the notation

∫ t

0

φdQt =

∫ t

0

∑

i,j

φ(i)φ(j) d〈M(i),M(j)〉t,

∫ t

0

φd|Q|t =

∫ t

0

∑

i,j

φ(i)φ(j) d|〈M(i),M(j)〉|t.

To ensure these expressions make sense, at least for bounded φ, we assume

E[|Q|t(1)] <∞ for all t ≥ 0. (3.5)

Here is our main convergence result.

Theorem 3.1 In addition to (3.1)–(3.5), assume that

|Q|∞(1) <∞ a.s. (3.6)

Let ν be a probability measure on RS such that

C(ν) ≡ sup
k∈S

∫

φ(k)2 dν(φ) <∞,

lim
t→∞

∫

(φPt(k))
2 dν(φ) = 0 for all k ∈ S.

(3.7)

Then 〈φ, xt〉 → 0 in ν ⊗ Px-probability as t→ ∞.

Proof. Let P = ν ⊗ Px, and let (φ, ω) denote a generic point in RS × Ω. Let
N t
s(i) =

[∫ s

0
Pt−rdMr

]

(i), s ≤ t, so that we may write xt = Ptx0 +N t
t . By (3.2),

〈φ1Sn , xt〉 = 〈φ1Sn , Ptx0〉 + 〈φ1Sn , N
t
t 〉.

As n → ∞, the left side and first term on the right side above converge in L2(P)
to 〈φ, xt〉 and 〈φ, Ptx0〉, respectively. This is because, for m < n,

E
[

〈φ(1Sn − 1Sm), xt〉
2+〈φ(1Sn − 1Sm), Ptx0〉

2
]

≤ C(ν)Ex
[

〈1Sn − 1Sm , xt〉
2 + 〈1Sn − 1Sm , Ptx0〉

2
]

,

and by (3.1), the right side above tends to 0 as m,n→ ∞. Therefore,

〈φ,N t
t 〉 = lim

n→∞
〈φ1Sn , N

t
t 〉 in L2

exists, and by Doob’s strong L2 inequality, E[sups≤t |〈φ1Sn , N
t
s〉−〈φ,N t

s〉|
2] → 0 as

n→ ∞. Consequently, 〈φ,N t
s〉 is a RCLL L2-martingale, and its predictable square
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function is the L2-limit of
∑

j,j′

∫ s

0
(φ1SnPt−r)(j)(φ1SnPt−r)(j

′)d〈M(j),M(j′)〉r,
given by

∑

j,j′

∫ s

0

φPt−r(j)φPt−r(j
′)d〈M(j),M(j′)〉r =

∫ s

0

(φPt−r) dQr. (3.8)

(The L2 limit follows easily from (3.5), (3.7) and the dominated convergence theo-
rem.) To sum up, we have established that

〈φ, xt〉 = 〈φ, Ptx0〉 + 〈φ,N t
t 〉, (3.9)

where {〈φ,N t
s〉, s ≤ t} is a RCCL L2-martingale, with predictable square function

〈〈φ,N t〉〉s =
∫ s

0
(φPt−r) dQr.

We must show both terms on the right side of (3.9) tend to 0 in P-probability
as t→ ∞. The first term is easy. By (3.7),

sup
k∈S

∫

φPt(k)
2 dν(φ) ≤ C(ν) . (3.10)

Therefore, we have

∫

〈φ, Ptx0〉
2 dν(φ) =

∫

〈φPt, x0〉
2 dν(φ)

=
∑

j,k

x0(j)x0(k)

∫

(φPt)(j)(φPt)(k) dν(φ)

≤
[

∑

j

x0(j)
(

∫

(φPt(j))
2 dν(φ)

)1/2]2

→ 0

(3.11)

as t→ ∞ by (3.1), (3.7) and dominated convergence.
To handle the martingale term in (3.9), we have

∫

〈〈φ,N t〉〉t dν(φ) =

∫ ∫ t

0

(φPt−r)dQr dν(φ)

≤

∫ ∞

0

1{r<t}

(

∫

(φPt−r)
2 dν(φ)

)1/2

d|Q|r.

Note that 1{r<t}[
∫

(φPt−r(k))
2 dν(φ)]1/2 → 0 pointwise as t → ∞ by (3.7), and by

(3.10) is bounded by C(ν)1/2. Therefore, by (3.6) and dominated convergence,

lim
t→∞

∫

〈〈φ,N t〉〉t dν(φ) = 0 Px-a.s. (3.12)

Using this fact and a standard stopping time argument for martingales, we have

P[|〈φ,N t
t 〉| > ε] ≤ P[〈〈φ,N t〉〉t > ε3] + P[|〈φ,N t

t 〉| > ε, 〈〈φ,N t〉〉t ≤ ε3]

≤ Ex
[

ν(〈〈φ,N t〉〉t > ε3)
]

+ ε

< 2ε

for t large. This completes our proof. �
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For the applications we have in mind, (3.1)–(3.5) will be easy to verify and (3.7)
will be our working hypothesis on ν. We now assume (3.1)–(3.5) and provide some
alternative conditions which imply (3.6).

If we repeat the first part of the previous proof with φ = 1, we see that

〈xt,1〉 = 〈x0,1〉 +
∑

i

[

∫ t

0

Pt−s dMs

]

(i),

where the sum converges a.s. and in L2. Let Pr(Sn, j) =
∑

i∈Sn
pr(i, j). Then

∑

i∈Sn

[

∫ t

0

Pt−sdMs

]

(i) =
∑

j∈Sm

∫ t

0

Pt−s(Sn, j) dMs(j) +
∑

j∈Sc
m

∫ t

0

Pt−s(Sn, j) dMs(j)

≡ Σ1
n,m + Σ2

n,m.

Dominated convergence and (3.5) imply that

lim
n→∞

Ex0

[

|Σ1
n,m −

∑

j∈Sm

Mt(j)|
2
]

= 0, lim
m→∞

sup
n

Ex0

[

|Σ2
m,n|

2
]

= 0.

This easily shows that
∑

jMt(j) converges in L2 to
∑

i[
∫ t

0
Pt−sdMs(i)], and so

(recall (3.1))

Xt = X0 +
∑

j

Mt(j). (3.13)

On account of this,

〈X〉t = Qt(1) for all t ≥ 0 a.s. (3.14)

Now, by the martingale convergence theorem, X∞ = limt→∞Xt exists and is
finite a.s., and we would like to infer that Q∞(1) = limt→∞Qt(1) is finite a.s. too,
but this requires an additional hypothesis if X is not continuous.

Lemma 3.1 Assume (Nt, t ≥ 0) is a nonnegative, square-integrable, RCLL mar-
tingale. If Tn = inf{t : Nt ≥ n} (with inf ∅ = ∞), and for each positive integer n,
E[(NTn −NTn−)21{Tn<∞})] <∞, then limt→∞〈N〉t <∞ a.s.

Proof. The assumption on the jumps implies that, for each n, the martingale

M
(n)
t = N2

t∧Tn
− 〈N〉t∧Tn is L1-bounded. Hence, as t → ∞, M

(n)
t converges a.s.

to a finite limit M
(n)
∞ . Since Nt is a nonnegative martingale, Nt converges a.s.

to a finite limit N∞. Therefore, on {Tn = ∞}, 〈N〉t → 〈N〉∞ = N2
∞ −M

(n)
∞ as

t→ ∞. The fact that N∞ is finite a.s. implies that P[∪n{Tn = ∞}] = 1, and hence
P[〈N〉∞ <∞] = 1. �

Here then are two conditions which together will imply (3.6). The first one is

d〈M(i),M(j)〉t ≥ 0 for all i, j ∈ S, t ≥ 0 a.s. (3.15)

The second, with Tn = inf{t : 〈xt,1〉 ≥ n}, is

E[(〈xTn ,1〉 − 〈xTn−,1〉)
21{Tn<∞}] <∞ for all n. (3.16)

Theorem 3.2 Assume (3.1)–(3.5), (3.15) and (3.16). Then (3.6) holds, and so
if ν is a probability measure on RS satisfying (3.7), then 〈φ, xt〉 → 0 in ν ⊗ Px0-
probability as t→ ∞.

Proof. Lemma 3.1 implies Q∞(1) < ∞ a.s., and (3.15) implies |Q|∞(1) = Q∞(1)
a.s. Therefore, (3.6) is true, and Theorem 3.1 completes the proof. �
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4 Mutually Catalytic Branching

As in Dawson and Perkins (1998), let (ut, vt) denote the mutually catalytic branch-
ing model defined by

dut = (p− I)ut dt+ (cutvt)
1/2dBt,

dvt = (p− I)vt dt+ (cutvt)
1/2dWt.

(4.1)

Here, p(i, j) is an irreducible Markov chain transition matrix, c is a fixed positive
constant, and the {Bt(i)} and {Wt(i)} are independent families of independent
one–dimensional standard Brownian motions. As in Dawson and Perkins (1998), we
assume S = Zd, p(i, j) is symmetric, and the exponential growth condition (H2) of
that paper holds. This growth condition is satisfied, for example, when p(i, j) is the
transition function of a symmetric random walk such that

∑

k φ−λ(k)p(0, k) < ∞

for all λ > 0, where φλ(k) = eλ|k|, |k| =
∑d
i=1 |ki|. To define an appropriate state

space, we introduce

Mtem =
{

u : Zd → R+ such that 〈u, φλ〉 <∞ ∀λ < 0
}

.

Let |u|λ = sup{|u(k)|φλ(k) : k ∈ Zd}, and topologize Mtem so that un → u in
Mtem iff limn→∞ |un − u|λ = 0 for all λ < 0. For each pair of initial conditions
(u0, v0) ∈M2

tem there is a well defined Markov process (ut, vt) determined by (4.1)
taking values in M2

tem (see Theorems 1.1 and 2.4 in Dawson and Perkins (1998) for
precise details), and its law P(u0,v0) on C([0,∞),M2

tem) is unique.
The mutually catalytic branching process (ut, vt) is self–dual. Let (ut, vt) be the

mutually catalytic branching process with initial state (u0, v0), and let (ũt, ṽt) be
the mutually catalytic branching process with initial state (ũ0, ṽ0). Mytnik (1998)
(see also Theorem 2.4 in Dawson and Perkins (1998)) showed that for u0, v0 ∈Mtem

and ũ0, ṽ0 ∈ XF ,

E(u0,v0)[e−〈ut+vt,ũ0+ṽ0〉+i〈ut−vt,ũ0−ṽ0〉]

= E(ũ0,ṽ0)[e−〈u0+v0,ũt+ṽt〉+i〈u0−v0,ũt−ṽt〉].
(4.2)

Suppose now that a, b ≥ 0 are fixed. Let (uat , v
b
t ) denote the mutually catalytic

branching model with initial state (ua0 , v
b
0) = (a,b). Then (4.2) implies that for ũ0,

ṽ0 in XF ,

E[e−〈ua
t +vb

t ,ũ0+ṽ0〉+i〈u
a
t −v

b
t ,ũ0−ṽ0〉]

= E(ũ0,ṽ0)[e−(a+b)〈1,ũt+ṽt〉+i(a−b)〈1,ũt−ṽt〉].
(4.3)

By Theorem 2.2 in Dawson and Perkins (1998), 〈1, ũt〉 and 〈1, ṽt〉 are nonnegative
martingales, and hence converge a.s. P(ũ0,ṽ0) as t → ∞. Therefore, the left side of
(4.3) must converge in distribution as t→ ∞. It is not hard to see that this implies
there is a stationary probability measure ν(a,b) on M2

tem such that

L[(uat , v
b
t )] ⇒ ν(a,b) as t→ ∞

in the sense of weak convergence of probabilities on M2
tem (see Theorem 1.4 of

Dawson and Perkins (1998)). In particular,

E(φ,ψ)[e−(a+b)〈1,ũt+ṽt〉+i(a−b)〈1,ũt−ṽt〉] = E[e−〈ua
t +vb

t ,φ+ψ〉+i〈ua
t −v

b
t ,φ−ψ〉]

→

∫

e−〈u′+v′,φ+ψ〉+i〈u′−v′,φ−ψ〉dν(a,b)(u
′, v′) (4.4)

11



as t → ∞. If T is the first exit time of planar Brownian motion (B1
t , B

2
t ) from the

first quadrant starting at (a, b), then under appropriate recurrence hypotheses on
Pt (satisfied, for example, by simple symmetric random walk in 1 or 2 dimensions),
ν(a,b)(·) = P[(B1

T ,B
2
T ) ∈ ·], where Bi

T (k) = BiT for all k. Hence u ≡ 0 or v ≡ 0
ν(a,b)-a.s. For transient Pt, u(k)v(k) > 0 for all k ν(a,b)-a.s. See Theorems 1.5 and
1.6 of Dawson and Perkins (1998) for the precise results and further information
about these limiting laws.

For a, b ≥ 0, define M(a,b) to be the collection of probability measures ν on
Mtem ×Mtem such that

sup
k

∫

(u2(k) + v2(k)) dν(u, v) <∞, (4.5)

lim
t→∞

∫

[(Ptu(k) − a)2 + (Ptv(k) − b)2] dν(u, v) = 0, k ∈ Zd. (4.6)

As does Mθ in Section 2, this class contains non-translation invariant laws. Assume,
for example, that Pt is the semigroup of simple symmetric random walk. If

(u0, v0) = (1(k1 < 0), 1(k1 > 0)), (4.7)

then δ(u0,v0) ∈ M(1/2,1/2). As for the parabolic Anderson model, if u0, v0 are

bounded non-negative maps on Zd whose averages over Euclidean balls approach a
and b, respectively, as the radius of the ball approaches ∞, then δ(u0,v0) ∈ M(a,b).

Our main technical result for the mutually catalytic branching model is:

Proposition 4.1 Let a, b ≥ 0, and ν ∈ M(a,b). If (u0, v0) has law ν, and (ũ0, ṽ0) ∈
XF ×XF , then

|〈u0 − a, ũt〉| + |〈v0 − b, ũt〉| + |〈u0 − a, ṽt〉| + |〈v0 − b, ṽt〉| → 0 (4.8)

in ν ⊗ P(ũ0,ṽ0)-probability as t→ ∞.

As in Section 2, a truncation argument can be used to prove

Corollary 4.1 If p(i, j) = p(0, j − i), and ν = L[(u0, v0)] is translation invariant,
shift ergodic and satisfies

∫

u(0) dν((u, v)) = a and
∫

v(0) dν((u, v)) = b, then (4.8)
holds.

Proof of Proposition 4.1. Let P = ν ⊗ P(ũ0,ṽ0). We will show that for all ε > 0,

lim
t→∞

P[|〈u− a, ũt〉| > ε] = 0, (4.9)

and it will be clear that our proof will apply to the other terms in (4.8). By Theorem
2.2 of Dawson and Perkins (1998),

ũt(i) = Ptũ0(i) +
∑

j

∫ t

0

pt−s(i, j)dMs(j),

where the series converges in L2, and the {(Mt(i))t≥0, i ∈ S} are orthogonal square-
integrable continuous martingales with square variation functions

〈M(i)〉t =

∫ t

0

(ũs(i)ṽs(i)) ds.

12



The same result shows that 〈ũt,1〉 is a continuous square-integrable martingale.
Therefore, (3.1) and (3.2) hold. The orthogonality of the {M(i)} and square inte-
grability of the total mass martingale imply (3.5) and (3.15), and the continuity of
〈ũt,1〉 implies that (3.16) holds trivially. Consequently, we may apply Theorem 3.2
with the measure ν of the result given by L[u0 − a]. �

As with the case of the parabolic Anderson model, we can use duality and
Proposition 4.1 to prove a convergence result for (ut, vt). Let d be a complete metric
inducing the topology of weak convergence on the space M1(M

2
tem) of probability

measures on M2
tem.

Theorem 4.1 Let ν = L[(u0, v0)]. Assume either that (i) ν ∈ M(a,b), or (ii)
p(i, j) = p(0, j−i) and ν is translation invariant, shift ergodic and satisfies

∫

u(0) dν((u, v)) =
a and

∫

v(0) dν((u, v)) = b. Then
(a) d

(

P(u,v)[(ut, vt) ∈ ·], ν(a,b)
)

→ 0 in dν(u, v)-probability as t→ ∞.
(b) Lν [(ut, vt)] ⇒ ν(a,b) as t→ ∞.

Proof. Clearly (b) follows from (a) by integrating out (u, v) with respect to ν.
For (a), choose ũ0, ṽ0 ∈ XF and let P = ν ⊗P(ũ0,ṽ0). Note that under P, (u, v)

is a random variable with distribution ν. If we let

f(u, v, φ, ψ) = e−〈u+v−(a+b),φ+ψ〉+i〈u−v−(a−b),φ−ψ〉,

then by (4.8), f(u, v, ũt, ṽt) → 1 in P-probability as t→ ∞. By (4.2),

E(u,v)
[

e−〈ut+vt,ũ0+ṽ0〉+i〈ut−vt,ũ0−ṽ0〉
]

= E(ũ0,ṽ0)
[

e−〈(u+v),ũt+ṽt〉+i〈(u−v),ũt−ṽt〉
]

= E(ũ0,ṽ0)
[

f(u, v, ũt, ṽt)e
−(a+b)〈1,ũt+ṽt〉+i(a−b)〈1,ũt−ṽt〉

]

.

By (4.4) and the above,

E(u,v)[e−〈ut+vt,ũ0+ṽ0〉+i〈ut−vt,ũ0−ṽ0〉]

→

∫

e−〈u′+v′,ũ0+ṽ0〉+i〈u
′−v′,ũ0−ṽ0〉 dν(a,b)(u

′, v′)
(4.10)

in dν(u, v)-probability as t → ∞. If λ > 0, then Theorems 2.2(b)(iii) and 1.4 of
Dawson and Perkins (1998) show that

∫

∣

∣

∣
E(u,v)[〈ut ± vt, φ−λ〉] −

∫

〈u′ ± v′, φ−λ〉 dν(a,b)(u
′, v′)

∣

∣

∣
dν(u, v)

=

∫

∣

∣

∣
〈Pt(u± v), φ−λ〉 − 〈a± b, φ−λ〉

∣

∣

∣
dν(u, v)

≤
∑

k

φ−λ(k)

∫

[|Ptu(k) − a| + |Ptv0(k) − b|] dν(u, v)

→ 0 as t→ ∞,

(4.11)

where we have used (4.5), (4.6), and dominated convergence in the last line. Let
Xq
F be the set of ũ0 in XF taking on rational values. Choose a sequence tn → ∞.

By (4.10) and (4.11) we may choose a subsequence tnk
such that for ν-a.a. (u, v),

lim
k→∞

E(u,v)[e−〈utnk
+vtnk

,ũ0+ṽ0〉+i〈utnk
−vtnk

,ũ0−ṽ0〉]

=

∫

e−〈u′+v′,ũ0+ṽ0〉+i〈u
′−v′,ũ0−ṽ0〉dν(a,b)(u

′, v′) for all ũ0, ṽ0 ∈ Xq
F , (4.12)
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and

lim
k→∞

E(u,v)[〈utnk
+ vtnk

, φ−λ〉] =

∫

〈u′ + v′, φ−λ〉dν(a,b)(u
′, v′) for all λ ∈ Q, λ > 0.

The latter implies that for ν-a.a. (u, v),

sup
k

E(u,v)[〈utnk
+ vtnk

, φ−λ〉] <∞ for all λ > 0. (4.13)

Fix (u, v) outside of a ν-null set so that (4.12) and (4.13) both hold. A simple
approximation argument using (4.13) to bound supkE(u,v)[〈utnk

+ vtnk
,1F 〉] for

each finite set F , allows one to extend (4.12) to all ũ0, ṽ0 in XF . This extension,
together with (4.13), allows us to apply Lemma 2.3(c) of Dawson and Perkins (1998)
to conclude that

d(P(u,v)((utnk
, vtnk

) ∈ ·), ν(a,b)) → 0 as k → ∞ ν − a.a. (u, v).
(4.14)

We have shown that every sequence tn → ∞ has a subsequence satisfying (4.14),
and so (a) is now immediate. �

We include (a) because it is used in Cox and Klenke (1998) to show that, under
the appropriate recurrence hyptheses mentioned above, as t→ ∞, the “predominant
type” near 0 changes infinitely often. (Recall in this setting that there is extinction
of one type in the equilibrium limit.) This result was the original motivation for
this work.

These methods also apply to the continuous version of (4.1). Let Ẇ1 and Ẇ2

be independent space-time white noises on R+ × R+ and consider the system of
stochastic partial differential equations

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) + (cu(t, x)v(t, x))1/2Ẇ1(t, x),

∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x) + (cu(t, x)v(t, x))1/2Ẇ2(t, x).

(4.15)

See Dawson and Perkins (1998) for a precise interpretation of this pair of equations.
Let |f |λ = sup{f(x)eλ|x| : x ∈ R} and assume that u0, v0 ∈ C+

tem, where

C+
tem = {f : R → [0,∞) : f is continuous, and |f |λ <∞ for all λ < 0}.

We topologize C+
tem so that fn → f in C+

tem if and only if |fn − f |λ → 0 for all
λ < 0.

By Theorem 1.7 of Dawson and Perkins (1998), there is a unique (in law) solution
(ut, vt) of (4.15) satisfying (u·, v·) ∈ C([0,∞), (C+

tem)2). Uniqueness was first shown
by Mytnik (1998) through the continuous analogue of (4.2). Let P(u,v) denote the
law of the solution of (4.15) with (u0, v0) = (u, v), and let Pν denote this law if
L[u0, v0] = ν, a probability measure on (C+

tem)2.
As in Dawson and Perkins (1998), for the purpose of convergence to equilibrium,

we weaken the topology on C+
tem. Let M c

tem = C+
tem but the weak topology given by:

fn → f in M c
tem if and only if lim

∫

fn(x)φ(x) dx =
∫

f(x)φ(x) dx for all continuous
φ satisfying |φ|λ <∞ for some λ > 0. As before, let Pa,b denote the law of a planar
Brownian motion started at (a, b) ∈ R2

+, and let T be the Brownain motion’s first
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exit time from the first quadrant. Let a,b denote the constant functions on R.
Theorem 1.8 of Dawson and Perkins (1998) states that, for a, b > 0,

Pa,b[(ut, vt) ∈ ·] ⇒ νc(a,b) = Pa,b[(B1
T ,B

2
T ) ∈ ·] (4.16)

in (M c
tem)2 as t→ ∞.

For a, b ≥ 0 let M(a,b) be the set of probability measures ν on (C+
tem)2 such that

sup
x

∫

(u2(x) + v2(x)) dν(u, v) <∞, (4.17)

lim
t→∞

∫

[(Ptu(x) − a)2 + (Ptv(x) − b)2] dν(u, v) = 0, all x ∈ R.
(4.18)

where now Pt is the semigroup of one-dimensional Brownian motion.
Although we may no longer invoke the “discrete” Theorem 3.2, it is easy to argue

directly as in Section 2, using (4.16), the continuous analogue of (4.2), and Theorem
6.1 in Dawson and Perkins, to prove the analogue of Theorem 4.1 given below. Let
d be a metric on M1((M

c
tem)2) inducing the topology of weak convergence on this

space of probability laws.

Theorem 4.2 Assume a, b ≥ 0, and ν = L[(u0, v0)] ∈ Mc
a,b.

(a) d
(

P(u,v)[(ut, vt) ∈ ·], νc(a,b)
)

→ 0 in dν(u, v)-probability as t→ ∞.

(b) L[(ut, vt)] ⇒ νc(a,b) as t→ ∞ in the sense of weak convergence of probability

measures on (M c
tem

)2.

5 Linear systems with values in [0,∞)Zd

We consider a subclass of the linear systems treated in Chapter IX of Liggett (1985).
We set S = Zd, and, following Liggett (1985), use x, i, j, k, l to denote generic
elements of Zd. Our process will be denoted ηt, and takes values in [0,∞)S . Let
A(x; i, j), x, i, j ∈ Zd, be nonnegative random variables. It is convenient to view
A(x) = A(x; i, j), i, j ∈ Zd, as a random matrix indexed by Zd ×Zd. Let M denote
the set of such infinite matrices. Given a configuration η ∈ [0,∞)S , let A(x)η be
the configuration defined by A(x)η(i) =

∑

j A(x; i, j)η(j). The process ηt is defined

as follows. At each x ∈ Zd there is a rate one exponential alarm clock. If the
clock at site x goes off at time t, the configuration ηt−is replaced by A(x)ηt−. At
each such time and site, independent instances of the A(x) are used and they are
identically distributed in time for each site x. The smoothing and potlatch processes
introduced in Spitzer (1981) are the main examples of this type of process we will
consider.

Let µ be the infinite measure on V = Zd × M given by

µ(C ×D) =
∑

x∈C

P[A(x) ∈ D], C ⊂ Zd, Borel D ⊂ M. (5.1)

We assume there is a finite constant M such that

sup
i

∫

[

∑

j

|A(x; i, j) − δ(i, j)|
]

+
[

∑

j

|A(x; i, j) − δ(i, j)|
]2

dµ(x,A) ≤M.
(5.2)
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This condition was introduced in Chapter IX of Liggett (1985) to ensure existence
of the desired process, and finiteness of second moments of its coordinates (see (1.4),
Lemma 1.6 and (3.2) of that reference). By Theorem IX.1.6 of Liggett (1985), there
is a strictly positive, summable function α on Zd such that

E
[

∑

x∈Zd

∑

i : i6=j

α(i)A(x; i, j)
]

≤Mα(j). (5.3)

Let X = Xα = {η ∈ [0,∞)Z
d

: 〈η, α〉 <∞}, endowed with the topology of pointwise
convergence. Under (5.2) there is a well defined Markov process ηt taking values
in X which is specified by the description above (see Theorem IX.1.14 of Liggett
(1985) for a precise statement).

Let Ã(x) denote the transpose of A(x). Then we may define another process η̃t
using the Ã(x) instead of the A(x). In order that η̃t be well defined, we assume that
(5.2) holds with A replaced by Ã. As shown in Liggett (1985), ηt and η̃t are dual
processes, exactly as in the parabolic Anderson model. Given η0 ∈ X and η̃0 ∈ XF ,

〈ηt, η̃0〉
d
= 〈η0, η̃t〉. (5.4)

Now define µ̃ as µ (5.1), but with Ã in place of A, and also

γx = E[(A− I)(x)], γ̃x = E[(Ã− I)(x)], (5.5)

and

γ =
∑

x

γx =

∫

(A− I)dµ(x,A), γ̃ =
∑

x

γ̃x =

∫

(Ã− I)dµ(x,A).
(5.6)

Since the A(x) are nonnegative, γ(i, j) and γ̃(i, j) are nonnegative for i 6= j. Clearly
(5.2) implies all these coefficients are finite and supi

∑

j |γ(i, j)|+ |γ̃(i, j)| <∞. We
also assume that

γ1 = 1γ = 0. (5.7)

Thus, γ and γ̃ are q–matrices for rate-one continuous time Markov chains on S
whose transition semigroups are γt and γ̃t, respectively. (Note that, for simplicity,
we have omitted the quantities a(i, j) in Liggett (1985).)

We now construct ηt as the unique solution of a stochastic differential equation
driven by a Poisson point process. Although this is not essential for our arguments,
it provides some additional methodology for the study of these linear systems, and
does not quite follow from the general constructions in Kurtz and Protter (1996).

We do this for η0 ∈ Xf = {η ∈ [0,∞)Z
d

: 〈η,1〉 < ∞}, although our construction
holds more generally. Give Xf the topology of weak convergence of finite measures
on Zd and let D(Xf ) denote the Skorokhod space of right continuous Xf -valued
paths on [0,∞) with left limits. Let N be a Poisson point process on [0,∞) × V
with intensity m× µ, with respect to the filtration Ft on (Ω,F ,P) (m is Lebesgue
measure). Let N̂ denote the orthogonal martingale measure

N̂(t, U) = N([0, t], U) − tµ(U) for µ(U) <∞. (5.8)

Recall that
∫ t

0

∫

f(s, ω, x,A)N̂(ds, dx, dA) is defined and is a local martingale for
a large class of integrands f (see section II.3 of Ikeda and Watanabe (1981)). For
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example if f ∈ L2, the class of Ft-predictable× Borel measurable functions such that
E[
∫ t

0

∫

V f(s, ω, x,A)2dµds] <∞ for all t > 0, then
∫ t

0

∫

f(s, ω, x,A)N̂(ds, dx, dA) is

a square-integrable martingale with square function
∫ t

0

∫

V f(s, ω, x,A)2dµ ds. For
square summable η ∈ [0,∞)S, let

q(η; i, j) =

∫

V

∑

i′

(A(x; i, i′) − δ(i, i′))η(i′)
∑

j′

(A(x; j, j′) − δ(j, j′))η(j′) dµ .
(5.9)

An application of Hölder’s inequality and (5.2) implies |q(η; i, j)| ≤M‖η‖2
2 <∞.

Proposition 5.1 (a) There is a unique process {ηt : t ≥ 0} with paths in D(Xf )
such that

ηt = η0 +

∫ t

0

∫

V

(A− I)ηs−N(ds, dx, dA) for all t ≥ 0, a.s.
(5.10)

Its law coincides with the law of the process constructed in Theorem IX.1.14 of
Liggett (1985) (and described above).

(b) The total mass process

〈ηt,1〉 = 〈η0,1〉 +

∫ t

0

∫

V

〈(A− I)ηs−,1〉N̂(ds, dx, dA) (5.11)

is a non-negative square-integrable martingale with predictable square function

Ct =

∫ t

0

∫

V

〈(A− I)ηs−,1〉
2 dµ ds =

∫ t

0

〈1, q(ηs−)1〉ds ∈ L1.
(5.12)

Moreover if we let

C̄t =

∫ t

0

∫

V

〈|(A − I)|ηs−,1〉
2 dµ ds, (5.13)

then C̄t is also integrable.
(c) We have

ηt = η0 +

∫ t

0

γηs ds+Mt, (5.14)

where for each i ∈ Zd,

Mt(i) =

∫ t

0

∫

V

(A− I)ηs−(i)N̂(ds, dx, dA) (5.15)

is a square-integrable martingale satisfying

〈M(i),M(j)〉t =

∫ t

0

q(ηs−; i, j) ds. (5.16)

Proof. (a) Let {Sn} be a sequence of finite sets increasing to Zd. As in Liggett
(1985) we start with solutions ηnt of the truncated system

ηnt = η0 +

∫ t

0

∫

V

1Sn(x)(A − I)ηns−N(ds, dx, dA). (5.17)
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Such solutions exist and are unique because N has finite intensity on compact time
intervals if x is restricted to Sn. With our finite initial conditions we may argue as
in Theorem IX.1.14 of Liggett (1985) but with α ≡ 1 to conclude that the limits

lim
n→∞

E[ηnt ] = mt, lim
n→∞

E[〈ηnt ,1〉] = 〈mt,1〉, (5.18)

exist, and

E[〈ηnt ,1〉] ≤ 〈η0,1〉 e
3Mt for all n ∈ N, t > 0. (5.19)

Define the matrices ax = E[|(A− I)(x)|] and

a =
∑

x

ax =

∫

V

|(A− I)| dµ. (5.20)

For m ≤ n,

E
[

sup
s≤t

〈|ηns − ηms |, 1〉
]

≤E

[
∫ t

0

∫

V

1Sm(x)〈|(A − I)||ηns− − ηms−|,1〉N(ds, dx, dA)

]

+ E

[
∫ t

0

∫

V

1Sn−Sm(x)〈|(A − I)|ηns−,1〉N(ds, dx, dA)

]

=

∫ t

0

∑

x∈Sm

〈axE[|ηns − ηms |],1〉 ds+

∫ t

0

∑

x∈Sn−Sm

〈axE[ηns ],1〉 ds

≤

[

sup
j
a1(j)

] [
∫ t

0

E [〈|ηns − ηms |,1〉] ds+

∫ t

0

〈|E[ηns ] −ms|,1〉 ds

]

+

∫ t

0

∑

x∈Sn−Sm

〈axms,1〉 ds.

(5.21)

Denote the last term in the above by εm,n(t). Note that (5.2) (applied to Ã) implies
supj

∑

i a(i, j) ≤M . This together with (5.19) implies that

∫ t

0

〈ams,1〉 ds ≤M

∫ t

0

〈η0,1〉e
3Ms ds, (5.22)

and so supt≤T εm,n(t) → 0 as m,n→ ∞ by dominated convergence. Clearly (5.18)
implies that for each s, limn→∞〈|E[ηns ]−ms|,1〉 = 0, and so (5.19) and dominated
convergence show that the “middle term” on the right side of (5.21) approaches 0
as m,n approach ∞. Substituting the above bounds into the right side of (5.21),
we arrive at

E

[

sup
s≤t

〈|ηns − ηms |,1〉

]

≤M

∫ t

0

E [〈|ηns − ηms |,1〉] ds+ δm,n(t),
(5.23)

where δm,n is an increasing function in t which approaches 0 as m,n → ∞. This
shows that for each T > 0,

E

[

sup
t≤T

〈|ηnt − ηmt |,1〉

]

≤ δm,n(T )eMT → 0 as m,n→ ∞. (5.24)
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By taking a subsequence we may assume that there is a process ηt with sample
paths in D(Xf ) such that limn→∞ supt≤T 〈|η

n
t − ηt|,1〉 → 0 for all T > 0 a.s. The

above argument and Fatou’s lemma also show that

E
[

sup
t≤T

∣

∣

∣

∫ t

0

∫

(

1Sm(x)〈(A − I)(ηms− − ηs−),1〉
)

N(ds, dx, dA)
∣

∣

∣

]

→ 0 as m→ ∞.
(5.25)

Now let n → ∞ in (5.17) to derive (5.10). The fact that the law of this solution
coincides with that of the process constructed in Theorem IX.1.14 of Liggett (1985)
is immediate from the construction of the latter as the weak limit of solutions to
(5.17).

Turning to the uniqueness of solutions to (5.10), we let η denote any solution of
this equation. If Tn = inf{t : 〈ηt,1〉 ≥ n}, then

E[〈ηt∧Tn ,1〉] ≤ 〈η0,1〉 + E

[

∫ t∧Tn

0

∫

V

〈|(A− I)|ηs−,1〉dµds

]

≤ 〈η0,1〉 +ME

[

∫ t∧Tn

0

〈ηs−,1〉 ds

]

(5.26)

again by applying (5.2) to Ã. The right side of the above is clearly finite, and so
fn(t) = E[〈ηt∧Tn ,1〉] is a finite function satisfying

fn(t) ≤ 〈η0,1〉 +M

∫ t

0

fn(s) ds. (5.27)

From this and Fatou’s lemma, we finally arrive at the bound

E[〈ηt,1〉] ≤ 〈η0,1〉e
Mt. (5.28)

The uniqueness now follows as in Section 9.1 of Kurtz and Protter (1996). We
apply their reasoning with Fi(ηs−, A, x) = (A − I)ηs−(i), and note that (9.2) of
that reference holds with their ai,j equal to our a(i, j), and their (9.6) holds with
p = 1, q = ∞, and α ≡ 1 by (5.2). Of course, Fi is not bounded as in that reference,
but this was only used to derive (5.28) and so is not needed.

Parts (b) and (c) of Theorem IX.2.2 of Liggett (1985) shows 〈ηt,1〉 is a mar-
tingale (this is also immediate from the representation and integrability conditions
derived below). Note that

E[C̄t∧Tn ] = E

[

∫ t∧Tn

0

∫

V

〈|(A− I)|ηs−,1〉
2 dµ ds

]

≤ E

[

∫ t∧Tn

0

〈ηs,1〉
22 sup

i

∫

V

(1|(A− I)|(i))2dµ ds

]

≤ E

[

∫ t∧Tn

0

〈ηs,1〉
22M ds

]

<∞,

(5.29)

where we again use (5.2) for Ã. The square integrability of 〈ηt∧Tn ,1〉 is now clear
from the above and (5.10). We also see from the above that

E
[

〈ηt∧Tn ,1〉
2
]

≤ 2〈η0,1〉
2 + 2E[C̄t∧Tn ]

≤ 2〈η0,1〉
2 + 4ME

[
∫ t

0

〈ηs∧Tn ,1〉
2 ds

]

.
(5.30)
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It follows that

E
[

〈ηt∧Tn ,1〉
2
]

≤ 2〈η0,1〉
2e4Mt, (5.31)

and Fatou’s lemma shows that 〈ηt,1〉 is square-integrable. Use this and let n→ ∞
in (5.29) to obtain the integrability of C̄(t) for each t.

The above integrability allows us to rewrite (5.10) as (see Section II.3 of Ikeda
and Watanabe (1981))

ηt = η0 +

∫ t

0

∫

V

(A− I)ηs−dµ ds+

∫ t

0

∫

V

(A− I)ηs−N̂(ds, dx, dA),
(5.32)

and this gives the expression in (c). The formulae for the predictable square func-
tions are immediate from our earlier discussion on the N̂ stochastic integrals. To
see the representation for 〈ηt,1〉 in (b) simply sum (5.10) over the sites in S. The
stochastic integrals converge in L1 by (5.2) and integrability of the total mass, and
(5.7) shows that the resulting integral with respect to N equals the same integral
with respect to the martingale measure N̂ . The integrability of C̄(t), and hence of
C(t), implies that C(t) is the predictable square function of this stochastic integral
representation of the total mass process (for it shows the integrand is in L2). �

Remark 5.1 Note that
∑

i,j

|〈M(i),M(j)〉|t

≤

∫

∑

i,j,i′,j′

∫

V

|A(i, i′) − δ(i, i′)||A(j, j′) − δ(j, j′)| dµ ηs(i
′)ηs(j

′) ds

= C̄t

(5.33)

and so the above integrability of C̄t implies (3.5) in Section 3.

If η̃0 ∈ XF , the above shows that 〈η̃t,1〉 is a nonnegative martingale, and hence
converges almost surely. In view of the duality relation (5.4), this implies weak
convergence of ηt starting from constant initial states. That is, if θ ∈ [0,∞) and ηθt
is the linear system with initial state ηθ0 = θ, then there is a probability measure νθ
on X such that

L[ηθt ] ⇒ νθ as t→ ∞

(as probability measures on [0,∞)Z
d

with the product topology). Moreover, if
φ ∈ XF ,

Eφ[e−θ〈1,η̃t〉] = E[e−〈ηθ
t ,φ〉]

→

∫

e−〈η,φ〉 dνθ(η) as t→ ∞.
(5.34)

For θ ∈ [0,∞), define Mθ to be the collection of probability measures ν on X
such that (recall that γt is the semigroup of the q–matrix γ defined in (5.6))

sup
k

∫

η2(k) dν(η) <∞, (5.35)

lim
t→∞

∫

(γtη(k) − θ)2 dν(η) = 0, k ∈ Zd. (5.36)
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Define C̃ and ¯̃C as in Proposition 5.1, but with (η̃, Ã) in place of (η,A). Hence

C̃t =
∫ t

0
〈1, q̃(η̃s)1〉ds is the predictable square function of the non-negative martin-

gale 〈η̃,1〉. For the following result, we recall that our standing hypotheses (5.2)
and (5.7) are in effect, and that q is the covariation kernel defined in (5.9).

Proposition 5.2 Let θ ∈ [0,∞) and ν = L[η0] ∈ Mθ. Assume that η̃0 ∈ Xf , and

∫ ∞

0

〈1, |q(η̃t)|1〉 dt <∞ a.s. Pη̃0 . (5.37)

Then

〈η0 − θ, η̃t〉 → 0 (5.38)

in ν ⊗ Pη̃0-probability as t→ ∞.

As in Section 2, the second moment condition can be weakened in the random walk
setting

γ(i, j) = γ(0, j − i), i, j ∈ Zd. (5.39)

A truncation argument can be used to prove

Corollary 5.1 If (5.37) holds, γ is the q-matrix of random walk, and ν = L[η0] is
translation invariant, shift ergodic and satisfies

∫

η(0) dν(η) = θ, then (5.38) holds.

We may apply the duality argument used in the previous sections to obtain the
following result.

Theorem 5.1 Assume (5.37) holds for all η̃0 ∈ Xf , and either (i) L[η0] ∈ Mθ,
or (ii) γ is the q-matrix of a random walk and L[η0] is translation invariant, shift
ergodic and satisfies

∫

η(0) dν(η) = θ. Then L[ηt] ⇒ νθ as t→ ∞.

Remark 5.2 It is possible to formulate and prove a stronger result, analogous to
part (a) of Theorem 4.1.

Remark 5.3 Theorems 3.17 and 3.29 in Chapter IX of Liggett (1985) give condi-
tions under which L[ηt] ⇒ νθ if γ is the q-matrix of a random walk, and L[η0] is
translation invariant and shift ergodic. Theorem 5.1 above solves, at least in part,
Problem 5 of Chapter IX in Liggett (1985).

Proof of Proposition 5.2. Apply Itô’s lemma to γ̃t−sη̃s in the decomposition for η̃
in Proposition 5.1(c) to see that

η̃t = γ̃tη̃0 + Ñ t
t , (5.40)

where

Ñ t
s(i) =

∑

j

∫ s

0

γ̃t−r(i, j)dM̃r(j) ≡

∫ s

0

γ̃t−rdM̃r(i), 0 ≤ s ≤ t,
(5.41)

and M̃ is defined as in Proposition 5.1(b) with Ã, η̃s, in place of A, ηs. Our
assumption (5.2) easily gives us enough summability to verify that the bounded
variation term in the above vanishes, and Remark 5.1 shows the above series of
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martingales is L2-convergent. Therefore (3.2) holds, while (3.1) is immediate from
Proposition 5.1, as is (3.5) (see Remark 5.1). Finally, (3.6) is precisely (5.37) (by
(5.16)), and so we may apply Theorem 3.2 with ν equal to the law of η0 − θ. �

With a view to verifying (5.37) we would like to infer C̃∞ < ∞ from the a.s.
convergence of 〈η̃t,1〉. To apply Lemma 3.1 we will need

∃ K > 0 : sup
j

∑

i

[|(Ã− I)(x)(i, j)| + |(A− I)(x)(i, j)|] ≤ K µ- a.a. (x,A).
(5.42)

Proposition 5.3 Let η̃0 ∈ Xf , and assume either condition (5.42), or

sup
t

Eη̃0 [〈η̃t,1〉
2] <∞. (5.43)

Then

C̃∞ =

∫ ∞

0

〈1, q(η̃s)1〉 ds <∞ a.s. (5.44)

Proof. For n ∈ N we define Tn = inf{t ≥ 0 : 〈η̃t,1〉 ≥ n}. If (5.42) holds
and n ≥ 〈η̃0,1〉, then Proposition 5.1(b) shows that |〈η̃Tn − η̃Tn−,1〉| ≤ nK a.s.
on {Tn < ∞}, where K is as in (5.42) and so Lemma 3.1 implies the required
conclusion. If the other hypothesis holds, then E[C̃∞] <∞ is obvious. �

Theorem 5.2 Assume either that condition (5.42) holds, or for each η̃0 ∈ Xf ,
suptE

η̃0 [〈η̃t,1〉2] < ∞. Assume also that q(η; i, j) ≥ 0 for all i, j ∈ Zd and square
summable η. Then (5.37) holds, and therefore, if L[η0] ∈ Mθ or L[η0] and γ are as
in Corollary 5.1, then L[ηt] ⇒ νθ as t → ∞.

Proof. As q(η̃t; i, j) ≥ 0, clearly the integral in (5.37) is just C̃∞. Proposition 5.3
therefore implies (5.37). The result now follows from Theorem 5.1. �

5.1 The Smoothing and Potlatch Processes

The two primary examples we consider are the smoothing process and the potlatch
process, which are dual to one another. Let p(i, j) be a doubly stochastic Markov
chain matrix, and let W be a bounded nonnegative random variable with mean
1. For the smoothing process, when the clock at x goes off, η(x) is replaced by
Wxpη(x), and all other coordinates are left fixed. Here, the Wx, x ∈ Zd are iid
with law L[W ]. For the potlatch process, when the clock at site x goes off, the
configuration η is replaced by A(x)η, where A(x)η(x) = p(x, x)Wxη(x), and for i 6=
x, A(x)η(i) = η(i) +Wxη(x)p(x, i). That is, the value η(x) is removed, multiplied
by Wx, and then redistributed according to the kernel p(x, i). The two processes
are respective duals.

For the smoothing process,

A(x; i, j) =











1, i = j 6= x,

Wxp(i, j), i = x,

0, else,

(5.45)

and hence

(A− I)(x; i, j) = ((Wxp) − I)(i, j)δ(i, x) .
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It follows that

(|(A− I)(x)| + |(Ã− I)(x)|)1(i) ≤ 2(Wx + 1)δ(i, x) . (5.46)

The boundedness condition on W shows that (5.42) holds and also gives (5.2) (al-
though square integrability suffices for the latter). Note also that (5.7) is true
because W has mean 1. We also have

q(η; i, j) = E[(((Wp) − I)η)(i)2]δ(i, j)

= (E[W 2 − 1]pη(i)2 + (p− I)η(i)2)δ(i, j) ≥ 0.
(5.47)

Thus, Theorem 5.2 applies when η̃t is the smoothing process, and hence we obtain
a convergence result for the dual of the smoothing process, which is the potlatch
process.

Theorem 5.3 Let ηt be the potlatch process, and assume that L[η0] ∈ Mθ, or that
p(i, j) is a random walk kernel and L[η0] is translation invariant, shift ergodic and
satisfies E[η0(0)] = θ. Then L[ηt] ⇒ νθ as t→ ∞.

For the potlatch process,

A(x; i, j) =











1, i = j 6= x,

Wxp(j, i), j = x,

0, else,

(5.48)

and hence

(A− I)(x; i, j) = (Wxp(j, i) − δ(j, i))δ(j, x)

and we have already checked (5.2) and (5.42) (see (5.46)). As before, (5.7) also
holds. Furthermore,

q(η; i, j) =
∑

k

E[(Wp(k, i) − δ(k, i))(Wp(k, j) − δ(k, j))]η(k)2,

and

〈1, q(η)1〉 = (E[W 2] − 1)〈η2,1〉.

Now, in the case that P[W = 1] < 1, E[W 2] > 1, so it follows from Proposition 5.3
that

∫ ∞

0

〈η2
t ,1〉 dt <∞ a.s. Pη̃0 . (5.49)

On the other hand, from the above expression for q(η; i, j),

〈1, |q(η)|1〉 ≤ (E[W 2] + 3)〈η2,1〉. (5.50)

Therefore, (5.37) holds by (5.49). Consequently, we obtain a convergence result for
the smoothing process via Theorem 5.1 in the case that P[W = 1] < 1.

In the case that P[W = 1] = 1, then 〈ηt,1〉 = 〈η0,1〉 with probability one for
all t, and there is no obvious way to obtain (5.37) in general. We now give a direct
derivation of (5.49) that holds in the transient, random walk (i.e., (5.39) holds)
case. Let p̂(i, j) be the symmetrized kernel, p̂(i, j) = (p(i, j) + p(j, i))/2, and let
Ĝ(i, j) =

∫∞

0
p̂s(i, j) ds (recall (1.1)).
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Proposition 5.4 Let ηt be the potlatch process. Assume (5.39), Ĝ(0, 0) <∞, and

E[W 2] <
Ĝ(0, 0)

(pĜp̃)(0, 0)
. (5.51)

Then for any initial η0 ∈ Xf ,
∫ ∞

0

E[〈η2
t ,1〉] dt <∞. (5.52)

Remark 5.4 The assumption Ĝ(0, 0) < ∞ implies that the right side of (5.51) is
strictly larger than 1. Thus, (5.49) must hold when Ĝ(0, 0) <∞ and P[W = 1] = 1.

Proof. Note that γt = Pt since E[W ] = 1. By (5.40)

E[η2
t (k)] = (Ptη0(k))

2 + E[(N t
t (k))

2]. (5.53)

It is the second term on the right side above that requires the most effort. By (5.49)
and (5.16)

E[N t
t (k)

2] =

∑

i,j

∫ t

0

pt−s(k, i)pt−s(k, j)
∑

l

E[((Wp) − I)(l, i)((Wp̃) − I)(l, j)]E[η2
s(l)] ds.

By summing on k, we obtain

E[〈(N t
t )

2,1〉] =
∑

i

∫ t

0

E[((Wp) − I)p̂2(t−s)((Wp̃) − I)](i, i)E[η2
s(i)] ds,

(5.54)

We define
p̂(t) = E[((Wp) − I)p̂t((Wp̃) − I)](i, i), i ∈ Zd,

which by translation invariance of p and p̂t does not depend on i. Note that
∫ ∞

0

p̂(t)dt = E[((Wp) − I)Ĝ((Wp̃) − I)](0, 0)

= E[W 2](pĜp̃)(0, 0) − Ĝ(0, 0) + 2,

(5.55)

and that, by assumption,
∫∞

0 p̂(t)dt < 2. Hence

∫ T

0

E[〈η2
t ,1〉] dt =

∫ T

0

〈(ptη0)
2,1〉 dt+

∫ T

0

dt

∫ t

0

ds p̂(2(t− s))E[〈η2
s ,1〉]

≤
1

2

(

〈η0, Ĝη0〉 +

∫ ∞

0

p̂(t)dt

∫ T

0

E[〈η2
t ,1〉] dt

)

, (5.56)

and we get
∫ T

0

E[〈η2
t ,1〉] dt ≤

〈η0, Ĝη0〉

2 −
∫∞

0 p̂(t) dt
<∞. (5.57)

Now let T → ∞. In particular
∫ ∞

0

E[〈η2
t ,1〉] dt ≤

Ĝ(0, 0)

Ĝ(0, 0) − E[W 2](pĜp̃)(0, 0)
〈η0,1〉

2 <∞.
(5.58)

�

To sum up, we now have the following.
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Theorem 5.4 Let ηt be the smoothing process. Assume either that P[W = 1] < 1,
or that P[W = 1] = 1, (5.39) holds and Ĝ(0, 0) < ∞. If L[η0] ∈ Mθ, or p(i, j) is
a random walk kernel and L[η0] is translation invariant, shift ergodic and satisfies
E[η0(0)] = θ, then L[ηt] ⇒ νθ as t→ ∞.

Finally we note that our method fails for the smoothing process with P[W =
1] = 1. First of all it is clear that we could not get (5.49) as we did above. In fact,
we can give an example where (5.49) turns out to be wrong. Hence in this case we
could not apply any version of Theorem 3.1. Here is the example.

Consider the nearest neighbour smoothing process ηt and potlatch process η̃t
on Z with P[W = 1] = 1. Hence, if A(i, j) is given by (5.48),

∫

(A − I)(i, k)(A −
I)(j, l)dµ = δ(k, l)(p− I)(k, i)(p− I)(l, j) assumes the values



























1, i = j = k = l,

− 1
2 , i ∼ j = k = l,

− 1
2 , j ∼ i = k = l,

1
4 , j ∼ k = l ∼ i,

(5.59)

where i ∼ j means |i− j| = 1. In particular, q(1{k}; i, i+ 2) = 1
41k=i+1. It follows

that
∫ ∞

0

〈1, |q(η̃t)|1〉 dt ≥
1

4

∫ ∞

0

〈η̃2
t ,1〉 dt. (5.60)

Note that for the potlatch process, 〈η̃t,1〉 = 〈η̃0,1〉 = 1 Pδ0 -a.s., t ≥ 0, and
Eδ0 [η̃t(u)] = γt(0, u), where γt = Pt, the probability transition function of nearest-
neighbour, rate-one, continuous random walk on Z. Let ρt = 1(−t3/4,t3/4). By
Chebyshev’s inequality, there exists a C ∈ (0,∞) such that

Eδ0 [〈η̃t,1− ρt〉] ≤ C/t3/2

On account of this estimate,

∫ ∞

0

Eδ0 [〈η̃t,1 − ρt〉]dt <∞.

By the Borel-Cantelli lemma, it follows that

lim
n→∞

∫ n+1

n

〈η̃t,1− ρt〉 = 0 Pδ0 − a.s. (5.61)

From this one can show, using the bounded transition rates of the potlatch process,
that limt→∞〈η̃t,1− ρt〉 = 0 Pδ0 -a.s., and thus

lim
t→∞

〈η̃t, ρt〉 = 1 Pδ0–a.s. (5.62)

Since 〈η̃t, ρt〉2 ≤ 〈η̃2
t ,1〉〈1, ρt〉, and 〈1, ρt〉 ∼ 2t3/4 as t→ ∞,

∫ ∞

1

〈η̃2
t ,1〉 dt ≥

∫ ∞

1

〈η̃t, ρt〉2

〈1, ρt〉
dt = ∞ Pδ0–a.s..

by (5.62). Thus, (5.49) does not hold.

25



References

[1] Cox, J.T., Fleischmann, K. and Greven, A. (1996). Comparison of interacting
diffusions and an application to their ergodic theory. Prob. Th. Rel. Fields 105

515–528.

[2] Cox, J.T., Greven, A. and Shiga, T. (1995). Finite and infinite systems of
interacting diffusions. Prob. Th. Rel. Fields 103 165–197.

[3] Cox, J.T. and Klenke, A. (1999). Recurrence and ergodicity of interacting
particle systems. Prob. Th. Rel. Fields (to appear).

[4] Dawson, D.A. and Perkins, E.A. (1998). Long-time behavior and co-existence
in a mutually catalytic branching model. Ann. Probab. 26 1088–1138.

[5] Ikeda, N. and Watanabe, S. (1981). Stochastic differential equations and diffu-
sion processes. North Holland, Amsterdam.

[6] Kurtz, T. and Protter, P. (1996) Weak convergence of stochastic integrals
and differential equations. II. Infinite-dimensional case. Probabilistic models
for nonlinear partial differential equations (Montecatini Terme, 1995), 197-285,
Lecture Notes in Math. 1627, Springer, New York.

[7] Liggett, T.M. (1973). A Characterization of the Invariant Measures for an
Infinite Particle System with Interactions. Trans. Amer. Math. Soc. 179 433–
451.

[8] Liggett, T.M. (1985). Interacting Particle Systems. Springer Verlag, New York.

[9] Liggett, T.M. and Spitzer, F.L. (1981). Ergodic theorems for coupled random
walks and other systems with locally interacting components. Z. Wahrsch.
verw. Gebiete 56 443–468.

[10] Mytnik, L. (1998). Uniqueness for a mutually catalytic branching model. Prob.
Th. Rel. Fields 112 245–253.

[11] Shiga, T. (1992). Ergodic theorems and exponential decay of sample paths for
certain interacting diffusion systems. Osaka J. Math. 29 789–807.

[12] Shiga, T. and Shimizu, A. (1980). Infinite-dimensional stochastic differential
equations and their applications. J. Math. Kyoto Univ. 20 395–416.

[13] Spitzer, F.L. (1981). Infinite systems with locally interacting components. Ann.
Probab. 9 349–364.

26


