A. Klenke, Probability Theory, 1st ed., Errata, 14.01.2023

p 6, line 8f	Replace \mathcal{A} by \mathcal{A}_{I} (five times).
p 8, line - 14 f	Replace $\tau \subset \Omega$ by $\tau \subset 2^{\Omega}$.
p 11, line 6	Change "1.10" to "1.9".
p 15, line 13	We have to assume $\mu\left(A_{1} \cup \ldots \cup A_{n}\right)<\infty$.
p 18, line 22	Replace $a<b$ by $a \leq b$.
p 20, line 5	Change this sentence to: Assume that there exist sets $\Omega_{1}, \Omega_{2}, \ldots \in \mathcal{E}$ such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$ and $\mu\left(\Omega_{n}\right)<\infty$ for all $n \in \mathbb{N}$.
p 20, line -3	Replace this sentence by the following paragraph: Now let $\Omega_{1}, \Omega_{2}, \ldots \in \mathcal{E}$ be a sequence such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$ and $\mu\left(\Omega_{n}\right)<\infty$ for all $n \in \mathbb{N}$. Let $E_{n}:=\bigcup_{i=1}^{n} \Omega_{i}, n \in \mathbb{N}$, and $E_{0}=\emptyset$. Hence $E_{n}=\biguplus_{i=1}^{n}\left(E_{i-1}^{c} \cap \Omega_{i}\right)$. For any $A \in \mathcal{A}$ and $n \in \mathbb{N}$, we thus get
	$\mu\left(A \cap E_{n}\right)=\sum_{i=1}^{n} \mu\left(\left(A \cap E_{i-1}^{c}\right) \cap \Omega_{i}\right)=\sum_{i=1}^{n} \nu\left(\left(A \cap E_{i-1}^{c}\right) \cap \Omega_{i}\right)=\nu\left(A \cap E_{n}\right) .$
p 25, line 6	Erase the right hand side of the first line in the display formula.
p 25, line 15	Replace $a<b$ by $a \leq b$.
p 27, line 18	Replace $[x, 0)$ by ($x, 0$). Add "for $x<0$ ".
p 27, lines -5, -4	Replace F by F_{μ} (twice).
p 32, line 11	Append " $A \subset \bigcup_{i=1}^{\infty} A_{i}$ and "
p 51, line -4	Delete "with $k:=\# J$ "
p 54, line 11	Replace Example 1.14 by Remark 1.14.
p 57, line 3	Replace display formula by $\mathbf{P}\left[\bigcap_{j \in J}\left\{X_{j} \in A_{j}\right\}\right]=\prod_{j \in J} \mathbf{P}\left[X_{j} \in A_{j}\right]$.
p 57, line - 15	Erase (iii).
p 59, line 3	Replace X^{-1} by X_{i}^{-1}
p 60, line -3	Replace "ring" by "semiring".

p 73, line 28 The graph (T, \sim) may contain circles. It is not too hard to see that, e.g., three trifurcation points can be pairwise directly connected. In order to save the argument one can do the following: Glue together all open edges that can be connected by an open path which traverses no trifurcation point. We thus obtain a graph consisting off the trifurcation points and these clumps of edges. In this graph, trifurcation points are the neighbours of the adjacent clumps of open edges but they are not direct neighbours of other trifurcation points. This graph now does not contain circles. Hence the remaining argument works (with minor changes).
p78, line 3
p 83, 3
p78, line 6
p89, lines 12, 13
Replace by $\sum_{k=1}^{\infty} \mathbf{P}[X=k] \cdot k(k-1) \cdots(k-n+1)$
change to "for all $i, k, n \in \mathbb{N}_{0}$."
The x_{i} have to have an accumulation point in $(0,1)$ unless $\psi(z)<\infty$ for some $z>1$.

Replace these two lines by:
Clearly, $f^{+} \leq g^{+}$a.e., hence $\left(f^{+}-g^{+}\right)^{+}=0$ a.e. By Theorem 4.8, we get $\int\left(f^{+}-g^{+}\right)^{+} d \mu=0$. Since $f^{+} \leq g^{+}+\left(f^{+}-g^{+}\right)^{+}$(not only a.e.), we infer from Lemma 4.6(i) and (iii)

$$
\int f^{+} d \mu \leq \int\left(g^{+}+\left(f^{+}-g^{+}\right)^{+}\right) d \mu=\int g^{+} d \mu
$$

Similarly, we use $f^{-} \geq g^{-}$a.e. to obtain

$$
\int f^{-} d \mu \geq \int g^{-} d \mu
$$

p98, line 13,16
p105, line -9
p108, line 9
p109, line -5
p115, line 19
p115, line 21

Replace $\int_{\varepsilon}^{\infty} g(t) d t$ by $\int_{0}^{\infty}(g(\varepsilon) \wedge g(t)) d t$.
Change $c=0$ to $c=-\mathbf{E}[Y]$.
Erase limsup.
\widetilde{S}_{n} instead of S_{n}.
Replace Y_{i} by $Y_{i}(x)$.
Replace Z_{i} by $Z_{i}(x)$.

p117, line 17	Change $\ell(k)$				
p117, line 18	Change $l \geq k$ to $l>k$.				
p117, line -6	Prepend minus signs to both sides of the equation.				
p121, line 17	Replace $\left\|S_{k}\right\| / k \leq 2\left\|S_{k}\right\| / k_{n+1}$ by $\left\|S_{k}\right\| / l(k) \leq 2\left\|S_{k}\right\| / l\left(k_{n+1}\right)$.				
p124, line 1ff	In order that equality holds in line 5 , (and not only \leq), we need to establish that $2^{n} \mathbf{P}\left[N_{2^{-n}} \geq 2\right] \xrightarrow{n \rightarrow \infty} \lambda$. This can be inferred by the fact that for all $n \in \mathbb{N}$ and $\varepsilon>0$, we have				
	$\mathbf{P}\left[N_{2^{-n}} \geq 2\right] \geq\left\lfloor 2^{-n} / \varepsilon\right\rfloor \mathbf{P}\left[N_{\varepsilon} \geq 2\right]-\left\lfloor 2^{-n} / \varepsilon\right\rfloor^{2} \mathbf{P}\left[N_{\varepsilon} \geq 2\right]^{2},$ which implies (by suitably letting $\varepsilon \rightarrow 0$) that $2^{n} \mathbf{P}\left[N_{2^{-n}} \geq 2\right] \geq$ $\lambda-2^{-n} \lambda^{2} \xrightarrow{n \rightarrow \infty} \lambda$.				
p132, line 10	Replace $\left\\|f_{n}-f\right\\|_{p}$ by $\left\\|f_{n}-f\right\\|_{p}^{p}$.				
p140, lines 1/2	Replace $\left\{\left\|f-f_{n_{k}^{\prime}}\right\|>g_{k}\right\}=\left\{\left\|f-f_{n_{k}^{\prime}}\right\|>g\right\}$ by				
	$\left\|f-f_{n_{k}^{\prime}}\right\|=\left(\left\|f-f_{n_{k}^{\prime}}\right\|-g\right)^{+}+g_{k}$				
	and $\int_{\left\{\left\|f-f_{n_{k}^{\prime}}\right\|>g\right\}}\left\|f-f_{n_{k}^{\prime}}\right\| d \mu$ by $\int\left(\left\|f-f_{n_{k}^{\prime}}\right\|-g\right)^{+} d \mu$.				
p154, line 23,26	Replace Λ^{2} by L^{2}.				
p158, Ex. 7.4.1	Not F, but its inverse F^{-1} is the continuous distribution function of a singular measure.				
p175, line -3	Repla				
p172, line 17	Replace " X be a nonnegative" by " $X>0$ be a strictly positive".				
p175, line 20	$\left(Z_{n}\right)$ is decreasing, hence Z is in fact the limit and not only limsup. Hence Fatou's lemma can be applied. In line 24 replace $\mathbf{E}\left[Z_{n}\right]$ by $\mathbf{E}\left[Z_{n} \mid \mathcal{F}\right]$.				
p180, line -5	append: "and which is such that $\kappa\left(\omega_{1}, E\right)<\infty$ for all $\omega_{1} \in \Omega_{1}$ and $E \in \mathcal{E}$."				
p184, line 2	exchange μ_{1} and μ				
p185, (8.16)	Replace $\kappa_{Y, \mathcal{F}}$ by $\kappa_{X, \mathcal{F}}$.				

p192, line -7	Replace $\{\tau \leq t\}$ by $\left\{\tau_{K} \leq t\right\}$.
p193, line 1	We assume that $I \subset[0, \infty$) is closed under addition (at least for (ii) and (iii)).
p196, line 27	Replace $\mathbf{E}\left[X_{s}\right]$ by X_{s}.
p 213 , line 6	Change $\langle X\rangle$ to $\langle X\rangle_{\tau}$.
p218, line 15	$\mathbf{E}\left[\left\|X_{n}\right\|^{p}\right]<\infty$ (bracket] missing).
p 225 , line 9	exchange + and - .
p227, line 15	After "events" append: "with $A_{n} \in \mathcal{F}_{n}$ for all $n \in \mathbb{N}$."
p227, line 17	$\begin{aligned} & \text { Replace } X_{n}=\sum_{n=1}^{\infty}\left(\mathbf{1}_{A_{n}}-\mathbf{P}\left[A_{n} \mid \mathcal{F}_{n-1}\right]\right) \text { by } X_{n}=\sum_{k=1}^{n}\left(\mathbf{1}_{A_{k}}-\right. \\ & \left.\mathbf{P}\left[A_{k} \mid \mathcal{F}_{k-1}\right]\right) \text {. } \end{aligned}$
p228, line 13	Replace Z^{n} by Z_{n}.
p232, line 21	Replace $i<k$ by $i \leq k$.
p234, line 13	Replace " $\mathcal{E}_{n}=$ " by " $\mathcal{E}_{n} \supset$ ".
p234, line 17	In order to avoid trivial cases, assume, for example, $E=\{0,1\}$, X_{1}, X_{2}, \ldots independent with $\mathbf{P}\left[X_{n}\right] \in(0,1)$ for all $n \in \mathbb{N}$ and $B=$ $\{1\}$.
p234, line 25	For $A \in \mathcal{E}_{n}$, there exists a measurable $B \subset E^{\mathbb{N}}$ such that $B^{\varrho}=B$ for all $\varrho \in S_{n}$. Define $F=\mathbf{1}_{B}$.
p235, (12.4)	Replace $\left(N \Xi_{N}\left(A_{l}\right)\right)^{m_{l}}$ by $\left(N \Xi_{N}\left(A_{l}\right)\right)_{m_{l}}$.
p 236 , line 20ff	Replace Y_{-n} by Y_{n}.
p237 (12.5)	Replace $\prod_{l=1}^{n}$ by $\prod_{l=1}^{k}$.

p248, line17	Since τ is not a semiring, Thm 1.65 cannot be used directly. A more subtle (and hopefully correct) proof for outer regularity is the following: First assume $B \subset E$ is closed and let $\varepsilon>0$. Let $B_{\delta}:=\{x \in E$: $d(x, B)<\delta\}$ be the open δ-neighbourhood of B. As B is closed, we have $\bigcap_{\delta>0} B_{\delta}=B$. Since μ is upper semicontinuous, there is a $\delta>0$ such that $\mu\left(B_{\delta}\right) \leq \mu(B)+\varepsilon$. Not let $B \in \mathcal{E}$ and $\varepsilon>0$. Consider $\mathcal{A}:=\{V \cap C: V \subset E$ open, $C \subset$ E closed $\}$. We have $\mathcal{E}=\sigma(\mathcal{A})$ and \mathcal{A} is a semiring. By Theorem 1.65, there are mutually disjoint sets $A_{n}=V_{n} \cap C_{n} \in \mathcal{A}, n \in \mathbb{N}$, such that $B \subset A:=\bigcup_{n=1}^{\infty} A_{n}$ and $\mu(A) \leq \mu(B)+\varepsilon / 2$. As shown above, for any $n \in \mathbb{N}$, there is an open set $W_{n} \supset C_{n}$ such that $\mu\left(W_{n}\right) \leq \mu\left(C_{n}\right)+$ $\varepsilon 2^{-n-1}$. Hence also $U_{n}:=V_{n} \cap W_{n}$ is open. Let $B \subset U:=\bigcup_{n=1}^{\infty} U_{n}$. We conclude that $\mu(U) \leq \mu(A)+\sum_{n=1}^{\infty} \varepsilon 2^{-n-1} \leq \mu(B)+\varepsilon$.
p262, line -10	Replace μ by μ_{n}.
p261, line -7	We also have to show that $F(-\infty)=0$ in order that F be a distribution function. This however follows from tightness just as in the lines -6ff.
p264, line -3	Replace \mathcal{E} by \mathcal{U}.
p266, line -3	Erase $\alpha\left(\bigcup_{i=1}^{n} A_{i}\right)=$.
p274, line 6	Replace A_{1}, \ldots, A_{n} by A_{1}, \ldots, A_{N}.
p274, line 10f	Delete "respectively a semiring" (twice).
p274, line 14	Replace $E_{j} \in \mathcal{E}_{j}$ by $E_{j} \in \mathcal{E}_{j} \cup\left\{\Omega_{j}\right\}$.
p274, line 21	Replace $E_{j} \in \mathcal{E}_{j}$ by $E_{j} \in \mathcal{E} \mathcal{E}_{j} \cup\left\{\Omega_{j}\right\}$.
p280, line 9	Replace $\kappa_{1} \otimes \kappa$ by $\kappa_{1} \otimes \kappa_{2}$.
p280, line -5	Replace ${\underset{k}{*}}_{\stackrel{i}{\bigotimes}}^{\otimes} \mathcal{A}_{k}$ by ${\underset{k}{*}}_{\stackrel{i}{\bigotimes}}^{\otimes} \mathcal{A}_{k}$.
p281, line -1	Replace φ_{k} by φ_{n}.
p286, line 24	Replace $\left.P_{n+1}\right\|_{\tilde{A}^{n}}$ by $\left.P_{n+1}\right\|_{\tilde{\mathcal{A}}^{n}}$.
p288, line 17	Replace $\omega \in \Omega$ by $\omega \in E$.

p289, line -4	Replace $\bigotimes_{k=i}^{n}$ by $\bigotimes_{k=i}^{n-1}$.				
p289, line -2f	Replace A_{l+1} by $A_{j_{l+1}}$ (twice).				
p290, line 2	Replace $f_{l+1}\left(\omega_{l+1}\right)$ by $f_{l-1}\left(\omega_{l-1}\right)$.				
p290, line 3	Replace $f\left(\omega_{l+1}\right)$ by $f_{l+1}\left(\omega_{l+1}\right)$.				
p290, line 17	Replace $\mu \otimes \kappa$ by $\int \mu(d x) \kappa(x, \cdot)$.				
p295, line 3	Replace $H(x)$ by $H_{z}(x)$.				
p295, line 8	Replace $h(y)$ by $h_{z}(y)$.				
p299, line 6	$\\|f\\|_{2}=\\|\varphi\\|_{2} /(2 \pi)^{d / 2}$.				
p302, line 21	Replace (t / a) by (t / θ).				
p303, line -1	Factor $1 / \sqrt{2 \pi}$ in front of the integral is missing.				
p303, line 11f	Replace + by - (four instances).				
p305, line 11	Replace $\varphi(t)$ by $\varphi_{X}(t)$.				
p314, lines 2, 3	Replace h^{n} by $\|h\|^{n}$ (two instances).				
p314, lines 12, 13	Replace $\sqrt{2 \pi n}$ by $1 / \sqrt{2 \pi n}$ (two instances).				
p315, line 18	Replace $\varphi^{(2 n)}(0)$ by $(-1)^{n} \varphi^{(2 n)}(0)$.				
p315, line -3	$\mathbf{E}\left[X^{2 k}\right]=(-1)^{k} u^{(2 k)}(0)$.				
p316, line 4	$\mathbf{E}\left[X^{2 n}\right]=(-1)^{n} u^{(2 n)}(0)=(-1)^{n} \varphi^{(2 n)}(0)$.				
p319, line -3	Replace $L_{n}(\varepsilon)$ by $\varepsilon^{-2} L_{n}(\varepsilon)$.				
p320, line 9	Replace εt by $\varepsilon\|t\|$.				
p328, line -5	Replace $\theta^{-1}=r=k$ by $\theta=r=k / 2$.				
p329, line -2	Replace display formula by				
	$\varphi_{r \nu}(t)=\exp \left(r \sum_{k=1}^{\infty} \frac{\left((1-p) e^{i t}\right)^{k}-(1-p)^{k}}{k}\right)=p^{r}\left(1-(1-p) e^{i t}\right)^{-r} .$				
p331, lines -3, -1	Replace μ_{n} by ν_{n}.				
p331, line -1	Replace ν by μ.				

p333, line 13	Replace $h(t)$ by $h(x)$.
p333, line -6	Replace $u(1)$ by $2 u(1)$.
p333, line -3	Replace $t \wedge 1$ by $t \vee 1$.
p336, line -6	Here and in the remaining proof the sign of $\bar{\psi}(0)$ is wrong. Replace $\bar{\psi}(0) \leq 0$ by $\bar{\psi}(0) \geq 0$.
p336, line -3	$\bar{\psi}(0)>0$.
p337, line 9	$\bar{\psi}_{n}(0)>0$ and $\tilde{\nu}_{n}(d x)=\left(h(x) / \bar{\psi}_{n}(0)\right) \nu_{n}(d x)$.
p337, line 10	Replace $-\bar{\psi}(t) / \bar{\psi}(0)$ by $\bar{\psi}(t) / \bar{\psi}(0)$.
p337, line 13, 15	Erase the minus sign.
p337, line 15	Replace $t \wedge 1$ by $t \vee 1$.
p337, line 16	The map f_{t} is not continuous. At this point, we have to work with $g_{t, \varepsilon}(x)=e^{-i t x}-1-i t x \mathbf{1}_{\{\|x\|<1-\varepsilon\}}$ instead of $g_{t}(x)=e^{i t x}-1-i t x \mathbf{1}_{\|x\|<1}$. We choose $\varepsilon>0$ such that ν has no atoms at the points of discontinuity $-1+\varepsilon$ and $1-\varepsilon$. By the Portemanteau Theorem (Theorem 13.16(iii)), we get convergence of the integrals. Finally, we let $\varepsilon \rightarrow 0$.
p337, line -5	Insert the factor $\bar{\psi}_{n}(0)$ before the integral $\int f_{t}(x) \tilde{\nu}_{n}(d x)$.
p338, (16.16)	Replace $(0, \infty)$ by $\mathbb{R} \backslash\{0\}$
p340, line 10	The relation $n b=n^{1 / \alpha} b$ is wrong since it does not pay respect to the change due to passing from ν to $\nu \circ m_{n^{1 / \alpha}}^{-1}$. We first have to compute the explicit form of ν. Then we can compute the correct scaling relation (here without detailed derivation):
	$n b=b n^{1 / \alpha}-\left(c^{+}-c^{-}\right)\left\{\begin{aligned} (1-\alpha)^{-1}\left(n^{1 / \alpha}-n\right), & \text { if } \alpha \neq 1 \\ n \log (n), & \text { if } \alpha=1 \end{aligned}\right.$
	Consequently, we get $b=\left(c^{+}-c^{-}\right) /(1-\alpha)$ in the case $\alpha \neq 1$. No changes are necessary for the case $\alpha=1$.
p340, (16.18)	Replace $i\left(c^{+}-c^{-}\right)$by $-i \operatorname{sign}(t)\left(c^{+}-c^{-}\right)$.

p344, (17.12)	Replace $\sum_{i=0}^{n-1}$ by $\sum_{i=1}^{n}$.
p347, line 13	Replace $\kappa_{t_{n+1}-t_{n}}$ by $\kappa_{t_{i+1}-t_{i}}$.
p353, line 3	Change I to E.
p350, line -9	Replace $t \in \mathbb{N}_{0}$ by $t \in I$ (twice).
p357, line 5	Replace "With this convention" by "Finally, we assume that".
p357, line -7	Define $p=I$ if $\lambda=0$.
p358, line 10	Replace \widetilde{p}_{t+s} by p_{t+s}.
p358, line 15	Replace \int_{0}^{t} by \int_{0}^{s} (twice).
p359, line -2	replace P_{x}^{Y} by \mathbf{P}_{x}^{Y}.
p363, line -4	We also agree that $0 / 0=0$ and $0 \cdot \infty=0$.
p363, line -2	Before "state" insert "non-absorbing".
p364, line 7	We assume that $x \neq y$.
p366, line 15	For the right term a factor 4^{n} is missing.
p373, line 15	Replace "If X " by "If any state"
p373, line 17f	Replace $\mu p^{n}(x)$ by $\mu p^{n}(\{x\})$ (twice) and $\mu(x)$ by $\mu(\{x\})$.
p375, line 19 f	Replace p by \widetilde{p} (four times).
p377, line $20 f$	$\mathbf{E}_{8}\left[\tau_{8}\right]=\frac{17}{8}$.
p384, line 4	Only for $d=1, \mu_{1} \preceq \mu_{2}$ is equivalent to $F_{1} \geq F_{2}$. Also, only for $d=1, F$ is a distribution function. The statement of p 383, line -2 remains true nevertheless (see Thm 3.3.5 of [116]).
p387, line 14	Replace $p\left(x, \hat{y}^{k}\right)$ by $p_{k}\left(x, \hat{y}^{k}\right)$.

p387, line 22	"Assume that L is sufficiently large...": This does not work in this generality. A simple way out is the following: Since X is irreducible and aperiodic, there is an $N \in \mathbb{N}$ such that $p^{N}(0, x)>0$ for all $x \in\{-1,0,1\}$. For the random walk $X_{n}^{\prime}:=X_{n N}, n \in \mathbb{N}$, the proof works with $L=1$. We obtain a coupling of the random walk X at times $0, N, 2 N, \ldots$. Finally, fill the gaps by suitable random variables such that we recover the original random walk. The drawback of this proof is that (X, Y) is not Markov, in general. However, this is not necessary for the conclusion of Corollary 18.15. Hence, in Definition 18.10 we would like to drop the requirement that the coupling be Markov.
p388, line 15	first two terms: modulus signs are missing.
p388, line 28	$Z:=\left(\left(\tilde{X}_{n}, \tilde{Y}_{n}\right)\right)_{n \in \mathbb{N}_{0}}$ (tildes missing).
p391, line -12	Some additional assumption on q has to be made, e.g., symmetry. Or more generally, that $q(x, y)>0$ iff $q(y, x)>0$ and that q is not reversible with respect to π (instead that p is not the uniform distribution).
p400, line 20 f	Replace p by r (three times).
p400, line 22	Replace ϱ^{k} by ρ^{k}.
p407, line 1	Instead of $F_{A^{\prime}}^{\prime}(x, y)>0$ for all x, we only have $F_{A^{\prime}}^{\prime}\left(x_{0}, y\right)>0$ which is not enough to apply Thm 19.6. The proof of Thm 19.6 however shows that we can relax the assumption of Thm 19.6: If $f\left(x_{0}\right)=\sup f\left(B_{x_{0}}\right)$, then $f\left(x_{0}\right)=f(y)$ for all $y \in B_{x_{0}}$. This is the statement of the formula in line 3.
p411, line 5	$\sum_{l=k}^{n-1}$ instead of $\sum_{l=k-1}^{n-1}$.
p415, line -3	Replace $2 D\left(A_{1}\right)$ by $4 D\left(A_{1}\right)$.
p421 (19.11) ,	Instead of the effective resistances, there should be the resistances in the network that is reduced to the three points 0,1 and x.
p423, line 1	Exercise 19.5.1 instead of 17.5.1.
p428, line -4f	Erase first two sentences.
p429, line -1	Replace ϱ_{i} by ϱ_{k}.
p433, line 9	Replace $c>0$ by $c \in \mathbb{R}$.

p443, line -6	Replace τ^{-n} by τ^{-i}.
p448, line -1	Replace ϱ^{γ} by $\varrho^{-\gamma}$.
p450, line -2	Replace Chebyshev's by Markov's.
p452, line 10	Replace $(n+1)(1-\gamma)$ by $n_{0}(1-\gamma)$.
p458, line 11	Delete the second integral sign.
p459, line -5	Replace $A_{N}=\bigcap_{n>n_{0}}$ by $A_{N}=\liminf _{n \rightarrow \infty} A_{N, n}$. In the first display formula on the subsequent page replace the first " \leq " by "=".
p459, line -4	Replace $B_{\tau^{n}}+t$ by $B_{\tau^{n}+t}$.
p461, (21.16)	Replace τ_{n} by τ^{n}.
p462, line 2	Replace τ_{n} by τ^{n}.
p463, line 1	Replace X_{t} by \widetilde{X}_{t}.
p466, line 17ff	$k=1, \ldots, 2^{n-1}$ instead of $k=1, \ldots, 2^{n}$. In the display: change $2^{n / 2}$ to $2^{(n-1) / 2}$ (twice) and 2^{n+1} to 2^{n} (twice).
p466, line 22	change to $\xi_{0,1},\left(\xi_{n, k}\right)_{n \in \mathbb{N}, k=1, \ldots, 2^{n-1}} \quad$ and $\quad X^{n} \quad:=\xi_{0,1} B_{0,1}+$ $\sum_{m=1}^{n} \sum_{k=1}^{2^{m-1}} \xi_{m, k} B_{m, k}$.
p467, line 10ff	change 2^{n} to 2^{n-1} (three times) and 2^{n+1} to 2^{n} (once).
p467, line -1	Replace I^{2} by $I(f)^{2}$.
p475, line12	$U_{\lfloor n t\rfloor}^{K}$ and $T_{\lfloor n t\rfloor}^{K}$ instead of $U_{\lfloor n t\rfloor}^{K, n}$ and $T_{\lfloor n t\rfloor}^{K, n}$.
p475, line -7	Replace $\frac{N}{\varepsilon^{2}}$ by $\frac{N}{\varepsilon^{2} \sigma^{2}}$.
p476, (21.35)	Replace $\frac{n(n-1)}{2}$ by $3 n(n-1)$ (twice).
p476, line 16.	Replace " $a=\lceil(t+s) n\rceil-(t+s) n$ and $a=s n-\lfloor s n\rfloor$ " by " $a=$ $(t+s) n-\lfloor(t+s) n\rfloor$ and $a=\lceil s n\rceil-s n "$.
p476, (21.36)	Replace $3 t^{2}$ by $18 t^{2}$ (three times) and $3 \sqrt{N}$ by $18 \sqrt{N}$.
p486, line 14	Replace $V_{T}^{1}\left(\langle F, G\rangle_{T}\right)$ by $V_{T}^{1}(\langle F, G\rangle)$.
p487, line 6	Insert a 2 in front of the second sum.
p488, line-1	Replace \mathbb{R}^{d} by \mathbb{R}^{3}.

p490, line -7	Replace ($a_{k+1}-a_{0}$) by $\left(a_{k+1}-a_{k}\right)$.
p491, line 10	Replace $\sum_{t \in \mathcal{P}_{s, T}^{n}}$ by $\sum_{t \in \mathcal{P}_{s^{\prime}, T}^{n}}$.
p491, line 14	Replace $\sum_{t \in \mathcal{P}_{s, T}^{n}}$ by $\sum_{t \in \mathcal{P}_{s^{\prime}, T}^{n}}$ and \mathcal{F}_{s} by $\mathcal{F}_{s^{\prime}}$.
p491, line 15	Replace $M_{T}-M_{s}$ by $M_{T}-M_{s^{\prime}}$ and \mathcal{F}_{s} by $\mathcal{F}_{s^{\prime}}$.
p493, line 20	Replace $M_{\tau_{\tau_{0} \wedge \tau_{n} \wedge t}^{2}}^{2}$ by $M_{\tau_{0} \wedge \tau_{n} \wedge t}^{2}$.
p499, line 8	If $m=0$ then $\theta=\delta_{(-1,0)}$ is a possible choice. In the remainder of the proof assume $m>0$.
p500, line 6	$\{\tau \leq t\}=\bigcap_{\substack{u, v \in \mathbb{Q} \\ u<0 \leq v}}\left(\{\Xi \in(-\infty, u] \times[v, \infty)\} \cap\left\{\tau_{u, v} \leq t\right\}\right) \in \mathcal{F}_{t}$.
p502, line 1	Replace $\mathbf{E}\left[X_{\infty}\right]$ by $\mathbf{E}\left[X_{\infty}^{2}\right]$.
p506, line 8	Replace $\frac{1}{\sqrt{2 \pi n}}$ by $\frac{1}{x \sqrt{2 \pi n}}$.
p512, line -6ff	The rate function is finite only if the random variable X_{1} can assume arbitrarily large and small values. Otherwise I can, e.g., look like in (23.6) and need not even be continuous. More precisely, the proof needs the following changes:
p512, line -2f	Replace lim by liminf.
p512, line -1	Erase " $=-I(x)$ ".
p513, line 1	change lim to liminf and $=$ to \geq.
p513, line 16	" $x \geq 0, x \in U$, such that $I(x)<\infty$ ".
p513, line 17	" $(x-\varepsilon, x+\varepsilon) \subset U$ ".
p513, line 18	Replace lim by liminf and " $=I(x-\varepsilon)$ " by " $\geq I(x)$ ". (Strict inequality holds since I is convex and since $I(x)<\infty$ is assumed.)
p513, line 21,22,23	Replace lim by liminf.
p513, line 25	Replace the display formula and the subsequent text line by
	$\liminf _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(U) \geq-\inf I(U)$
p518, line 2	Replace $\inf _{\mu} I$ by $\inf I_{\mu}$.
p518, line 4	Replace \geq by \leq.


```
p520, line 12f Replace }x\inI\mathrm{ by }x\inE\mathrm{ and }\phi(x)-\delta by \phi(x)+\delta
p522, line 5
p529, line -2
p530, line 1
p533, line 15
p534, line 7
p534, line -4
p536, line 20
p536, line 24
p536, line -1
p537, line 15
p539, line 10
p539, line 14
p541, line 2
p541, line 3
p546, line 18 Erase "a.s."
p548, lines 3,6
p555, line 19
p556, line 2
p556, line-10
p556, line -8
p556, line -6
p558, line -2
I
Replace 2-n}\mu(A)\mathrm{ by 1- exp(2-n}\mu(A))
Replace 2-n}\mu(A)\mathrm{ by 1- exp(2-n}\mu(A))
The ( }\mp@subsup{Y}{x}{}\mp@subsup{)}{x\inE}{}\mathrm{ have to be independent of X.
Change }\mp@subsup{X}{}{\kappa}(A)\mathrm{ to }\mp@subsup{X}{}{\kappa}\mathrm{ .
Change }\nu\inE\mathrm{ to }\nu\in\mp@subsup{\mathcal{M}}{1}{(E)}\mathrm{ .
Define }\mp@subsup{\Delta}{n}{\prime}\mathrm{ as }\mp@subsup{\Delta}{n}{\prime}:={(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n-1}{})\in(0,1\mp@subsup{)}{}{n-1}:\mp@subsup{\sum}{i=1}{n-1}\mp@subsup{x}{i}{}<1}
Replace }\mp@subsup{\Delta}{n-1}{\prime}\mathrm{ by }\mp@subsup{\Delta}{n}{\prime}\mathrm{ .
Replace ( }\mp@subsup{s}{j}{}/s\mathrm{ ) by }\mp@subsup{s}{j}{}\mathrm{ .
Replace n-2 by n-1.
Replace X }\mp@subsup{X}{}{n,1}=(\mp@subsup{X}{\mp@subsup{I}{1}{n}}{n},\mp@subsup{X}{2}{},\ldots\mathrm{ by }\mp@subsup{\hat{X}}{}{n,1}=(\mp@subsup{X}{\mp@subsup{I}{1}{n}}{n},\mp@subsup{X}{1}{n},\mp@subsup{X}{2}{n},\ldots
Replace X }\mp@subsup{X}{}{n,1}\mathrm{ by }\mp@subsup{\hat{X}}{}{n,1}\mathrm{ .
Replace PD by GEM.
Replace Theorem 25 by Theorem 3.2.
Replace I }\mp@subsup{I}{}{W}(\mp@subsup{H}{}{(t)})\mathrm{ by I}\mp@subsup{I}{\infty}{W}(\mp@subsup{H}{}{(t)})
Replace }\mp@subsup{\mathcal{P}}{T}{}\mathrm{ by }\mp@subsup{\mathcal{P}}{T}{n}\mathrm{ .
Replace F( }\mp@subsup{M}{s}{})\mathrm{ by F F
Add"and M}\mp@subsup{M}{0}{}=0"\mathrm{ ".
Replace F( }\mp@subsup{X}{t}{})-F(\mp@subsup{X}{0}{})\mathrm{ by F(XX ) - F( (X0).
Replace }\langleX\mp@subsup{\rangle}{t}{}\mathrm{ by }\langleX\mp@subsup{\rangle}{T}{}\mathrm{ .
Replace " = T" by " }\leqT\mathrm{ ".
```

```
p560, line 11 
p560, (25.16) Replace \int0
p561, line 5 Replace F by (F(W (W) )
p561, line 17 Replace (26.3) by (26.17).
p565, line -7 Replace d=2 by d\leq2.
p565, line -3 On the r.h.s. replace | }|\mp@subsup{W}{t}{}|<r\mathrm{ by | Wt| \s.
p574, line 15 In the right inequality on the right hand side the factor }K\mathrm{ is missing.
p574, line 18 \ldots. and [51, Theorem 5.3.1]...
p574, line 18 ... and [51, Theorem 5.3.1]...
p577, line 8 Replace }\mp@subsup{\mathbf{1}}{(0,\infty)}{}\mathrm{ by }\mp@subsup{\mathbf{1}}{[0,\infty)}{}
p577, line 15 Replace }\mp@subsup{\int}{0}{1}\mathrm{ by }\mp@subsup{\int}{0}{t}\mathrm{ .
```

