A. Klenke, Probability Theory, 2nd edition, Errata, 14.01.2023

p 17, line 5	Replace $a<b$ by $a \leq b$.				
p 24, line 3	Replace $a<b$ by $a \leq b$.				
p 25, line -6	Replace $[x, 0)$ by ($x, 0$). Add "for $x<0$ ".				
p 26, lines 7, 9	Replace F by F_{μ} (twice).				
p 74, line 27	Replace $=$ by \geq				
p 89, lines 12, 13	Replace these two lines by: Clearly, $f^{+} \leq g^{+}$a.e., hence $\left(f^{+}-g^{+}\right)^{+}=0$ a.e. By Theorem 4.8, we get $\int\left(f^{+}-g^{+}\right)^{+} d \mu=0$. Since $f^{+} \leq g^{+}+\left(f^{+}-g^{+}\right)^{+}$(not only a.e.), we infer from Lemma 4.6(i) and (iii)				
	$\int f^{+} d \mu \leq \int\left(g^{+}+\left(f^{+}-g^{+}\right)^{+}\right) d \mu=\int g^{+} d \mu$				
	Similarly, we use $f^{-} \geq g^{-}$a.e. to obtain				
	$\int f^{-} d \mu \geq \int g^{-} d \mu$				
p134, line 10	Replace $\left\\|f_{n}-f\right\\|_{p}$ by $\left\\|f_{n}-f\right\\|_{p}^{p}$.				
p181, line 2	append: "and which is such that $\kappa\left(\omega_{1}, E\right)<\infty$ for all $\omega_{1} \in \Omega_{1}$ and $E \in \mathcal{E}$."				
p196, line 26	Replace $\mathbf{E}\left[X_{s}\right]$ by X_{s}.				
p234, line 5	Replace " $\mathcal{E}_{n}=$ " by " $\mathcal{E}_{n} \supset$ ".				
p235, (12.4)	Replace $\left(N \Xi_{N}\left(A_{l}\right)\right)^{m_{l}}$ by $\left(N \Xi_{N}\left(A_{l}\right)\right)_{m_{l}}$.				
p 236 , line 14ff	Replace Y_{-n} by Y_{n}.				
p261, line 17ff	Replace the definitions of V_{n} and W_{n+1} by $V_{n}:=\bigcup_{i=1}^{n} U_{i}$ and $W_{n+1}:=V_{N\left(\bar{W}_{n}\right)}$, respectively.				
p263, line -4	We also have to show that $F(-\infty)=0$ in order that F be a distribution function. This however follows from tightness just as in the lines -3ff.				
p276, line 9	Replace $E_{j} \in \mathcal{E}_{j}$ by $E_{j} \in \mathcal{E}_{j} \cup\left\{\Omega_{j}\right\}$.				
p276, line 16	Replace $E_{j} \in \mathcal{E}_{j}$ by $E_{j} \in \mathcal{E}_{j} \cup\left\{\Omega_{j}\right\}$.				
p289, line -6	Replace $\omega \in \Omega$ by $\omega \in E$.				

p297, line 1	Replace $H(x)$ by $H_{z}(x)$.				
p297, line 6	Replace $h(y)$ by $h_{z}(y)$.				
p301, line 8	$\\|f\\|_{2}=\\|\varphi\\|_{2} /(2 \pi)^{d / 2}$.				
p301, line -3	Factor $1 / \sqrt{2 \pi}$ in front of the integral is missing.				
p304, line 18	Replace ($t / a)$ by (t / θ).				
p306, line -7	Replace $\varphi(t)$ by $\varphi_{X}(t)$.				
p316, lines 3, 4	Replace h^{n} by $\|h\|^{n}$ (two instances).				
p316, lines 13, 14	Replace $\sqrt{2 \pi n}$ by $1 / \sqrt{2 \pi n}$ (two instances).				
p318, line 1	$\mathbf{E}\left[X^{2 k}\right]=(-1)^{k} u^{(2 k)}(0)$.				
p323, line 3	Replace $L_{n}(\varepsilon)$ by $\varepsilon^{-2} L_{n}(\varepsilon)$.				
p323, line -4	Replace εt by $\varepsilon\|t\|$.				
p335, lines 25, 27	Replace μ_{n} by ν_{n}.				
p335, line 27	Replace ν by μ.				
p341, line 11	The map f_{t} is not continuous. At this point, we have to work with $g_{t, \varepsilon}(x)=e^{-i t x}-1-i t x \mathbf{1}_{\{\|x\|<1-\varepsilon\}}$ instead of $g_{t}(x)=e^{i t x}-1-i t x \mathbf{1}_{\|x\|<1}$. We choose $\varepsilon>0$ such that ν has no atoms at the points of discontinuity $-1+\varepsilon$ and $1-\varepsilon$. By the Portemanteau Theorem (Theorem 13.16(iii)), we get convergence of the integrals. Finally, we let $\varepsilon \rightarrow 0$.				
p342, (16.16)	Replace ($0, \infty$) by $\mathbb{R} \backslash\{0\}$.				
p344, (16.20)	Replace $i\left(c^{+}-c^{-}\right)$by $-i \operatorname{sign}(t)\left(c^{+}-c^{-}\right)$.				
p353, line 11	Replace $\kappa_{t_{n+1}-t_{n}}$ by $\kappa_{t_{i+1}-t_{i}}$.				
p356, line 12	Replace $t \in \mathbb{N}_{0}$ by $t \in I$ (twice).				
p408, line 13f	Replace p by r (three times).				
p408, line 15	Replace ϱ^{k} by ρ^{k}.				
p437, line 14	Replace ϱ_{i} by ϱ_{k}.				
p438, lines 5,6,7	Replace ∞ by 0 (three times).				
p448, line 14	Replace $\xrightarrow{n \rightarrow \infty}$ by $\xrightarrow{m \rightarrow \infty}$.				
p450, line 7	Of course, the convergence $A_{n}^{\varepsilon} \uparrow A_{n}^{0}$ holds only on the event $\left\{S_{n} \rightarrow\right.$ $\infty\}$, wich has probability 1 .				
p450, lines 9, 10	Replace A_{n}^{ε} by A_{i}^{ε} (twice).				
p450, line 10	Replace $S_{n} \geq \frac{p n \varepsilon}{2}$ by $S_{n} \geq S^{-}+\frac{p n \varepsilon}{2}$.				
p450, line 11	Replace $\frac{p m \varepsilon}{2}$ by $\frac{p \varepsilon}{2}$.				


```
p551, line 20 和:=(\int\mp@subsup{\delta}{\mp@subsup{\phi}{i}{}(x)}{}X(dx))}\mp@subsup{|}{(0,\infty)}{}=(X\circ\mp@subsup{\phi}{i}{-1})\mp@subsup{|}{(0,\infty)}{
p551, line 23 Replace }\mp@subsup{G}{1}{}\geq\mp@subsup{G}{2}{}\mathrm{ by }\mp@subsup{G}{1}{}\leq\mp@subsup{G}{2}{}
p558, line -3 Replace X }\mp@subsup{X}{}{n,1}=(\mp@subsup{X}{\mp@subsup{I}{1}{n}}{n},\mp@subsup{X}{2}{},\ldots\mathrm{ by }\mp@subsup{\hat{X}}{}{n,1}=(\mp@subsup{X}{\mp@subsup{I}{1}{n}}{n},\mp@subsup{X}{1}{n},\mp@subsup{X}{2}{n},\ldots
p559, line 2 Replace X 年, by }\mp@subsup{\hat{X}}{}{n,1}
p541, line -6 Replace PD by GEM.
p541, line -5 Replace Theorem 25 by Theorem 3.2.
p576, line 18 Replace }\mp@subsup{\mathcal{P}}{T}{}\mathrm{ by }\mp@subsup{\mathcal{P}}{T}{n}
p577, line -5 Replace F(Xt) - F( (X0) by F(XT) - F( (X0).
p577, line -3 Replace }\langleX\mp@subsup{\rangle}{t}{}\mathrm{ by }\langleX\mp@subsup{\rangle}{T}{}
p581, line-1 Replace }\mp@subsup{\sigma}{s}{i,l}\mathrm{ by }\mp@subsup{\sigma}{s}{l,i}
p582, (25.17) Replace }\mp@subsup{\int}{0}{t}\mathrm{ by }\mp@subsup{\int}{0}{T}\mathrm{ (three times).
p582, line 17 Replace F by (F(Wt) (W t\geq0
p587, line 7 Replace d=2 by d\leq2.
p587, line 11 On the r.h.s. replace |\mp@subsup{W}{t}{}|<r\mathrm{ by | Wt | s s.}
p596, line 18 In the right inequality on the right hand side the factor }K\mathrm{ is missing.
p599, line 17 Replace \mp@subsup{\mathbf{1}}{(0,\infty)}{}\mathrm{ by }\mp@subsup{\mathbf{1}}{[0,\infty)}{}.
p599, line -6 Replace }\mp@subsup{\int}{0}{1}\mathrm{ by }\mp@subsup{\int}{0}{t}
```

