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Abstract

For several pairs (P,Q) of classical distributions on N0, we show that their stochas-
tic ordering P ≤st Q can be characterized by their extreme tail ordering equivalent to
P ({k∗})/Q({k∗}) ≥ 1 ≥ limk→k∗ P ({k})/Q({k}), with k∗ and k∗ denoting the min-
imum and the supremum of the support of P + Q, and with the limit to be read as
P ({k∗})/Q({k∗}) for k∗ finite. This includes in particular all pairs where P and Q are
both binomial (bn1,p1 ≤st bn2,p2 if and only if n1 ≤ n2 and (1− p1)n1 ≥ (1− p2)n2 , or
p1 = 0), both negative binomial (b−r1,p1

≤st b
−
r2,p2

if and only if p1 ≥ p2 and pr1
1 ≥ p

r2
2 ),

or both hypergeometric with the same sample size parameter. The binomial case is
contained in a known result about Bernoulli convolutions, the other two cases appear
to be new.

The emphasis of this paper is on providing a variety of different methods of proofs:
(i) half monotone likelihood ratios, (ii) explicit coupling, (iii) Markov chain compar-
ison, (iv) analytic calculation, and (v) comparison of Lévy measures. We give four
proofs in the binomial case (methods (i)-(iv)) and three in the negative binomial case
(methods (i), (iv) and (v)). The statement for hypergeometric distributions is proved
via method (i).

2000 MSC: primary 60E15

Keywords: Bernoulli convolution; binomial distribution; coupling; hypergeometric distri-
bution; negative binomial distribution; monotone likelihood ratio; occupancy problem;
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1



2

1 Introduction

1.1 Stochastic Ordering

For probability measures P and Q on the real numbers, the stochastic ordering is the
partial ordering

P ≤st Q ⇐⇒ P ([x,∞)) ≤ Q([x,∞)) for all x ∈ R.

This condition is equivalent to the existence of two real-valued random variables X and Y
with distributions P and Q, respectively, and such that X ≤ Y almost surely. In fact, let
FP and FQ denote the distribution functions of P and Q, respectively, and let F−1

P and
F−1
Q be their left-continuous inverses. That is,

F−1
P (t) := inf{x ∈ R : FP (x) ≥ t}.

Further, let U be uniformly distributed on (0, 1). Then X := F−1
P (U) and Y := F−1

Q (U)
have the desired property. Such a pair (X,Y ) is called a coupling.

Recall that P ≤st Q is equivalent to the condition that for any bounded and monotone
increasing function f : R→ R, we have∫

f dP ≤
∫
f dQ.

If P and Q have finite expectations, then taking f(x) = max(−n,min(x, n)) and letting
n → ∞ yields that P ≤st Q implies

∫
xP (dx) ≤

∫
xQ(dx). Thus stochastic ordering

implies ordering of the expected values but not vice versa.

There is a vast literature on stochastic orderings, and we only refer to [5], [10] and [11].

Let bn,p denote the binomial distribution with parameters n ∈ N and p ∈ [0, 1], let Poiλ
denote the Poisson distribution with parameter λ > 0 and let b−r,p denote the negative
binomial distribution (also known as Pascal distribution) with parameters r ∈ (0,∞) and
p ∈ (0, 1]. Recall that b−r,p is the probability measure on N0 with weights

b−r,p({k}) =
(
−r
k

)
(−1)kpr(1− p)k =

(
r + k − 1

k

)
pr(1− p)k for k ∈ N0.

Further, we denote by

hypB,W,n({k}) =
(
B

k

)(
W

n− k

)/(B +W

n

)
, k = (n−W )+, . . . , B ∧ n

the hypergeometric distribution with parameters B,W ∈ N0 and n ∈ N with n ≤ B +W .
The main goal of this paper is to prove necessary and sufficient conditions for bn1,p1 ≤st

bn2,p2 , for b−r1,p1 ≤st b
−
r2,p2 and for hypB1,W1,n1

≤st hypB2,W2,n2
in terms of the parameters

r1, r2, n1, n2, p1, p2, B1,W1, B2,W2.
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Since stochastic ordering implies ordering of expectations, bn1,p1 ≤st bn2,p2 implies p1n1 ≤
p2n2, but this condition is not sufficient for bn1,p1 ≤st bn2,p2 . However, if n := n1 = n2,
then

bn,p1 ≤st bn,p2 ⇐⇒ p1 ≤ p2. (1.1)

There are various proofs of this statement, the simplest being a coupling: Let U1, . . . , Un
be i.i.d. random variables that are uniformly distributed on [0, 1]. For i = 1, 2, let

Ni = #{k : Uk ≤ pi}.

Then Ni ∼ bn,pi and N1 ≤ N2 almost surely. In Section 3 we present a more involved
coupling proving the sufficiency of a characterization of bn1,p1 ≤st bn2,p2 also when n1 6= n2.

1.2 The Likelihood Ratio Order

Before we come to the statement of the main theorem of this article let us briefly discuss
a stronger notion of ordering of two probability measures on R, the so-called monotone
likelihood ratio order. Let µ be any σ-finite measure such that P and Q are absolutely
continuous with respect to µ and µ is absolutely continuous with respect to P +Q. Fur-
thermore, define the respective densities

f =
dP
dµ

and g =
dQ
dµ

.

P is said to be smaller than or equal to Q in the monotone likelihood ratio order (P ≤lr Q)
if there exist versions of f and g such that the likelihood ratio

x 7→ `(x) :=
f(x)
g(x)

is monotone decreasing. (1.2)

Note that the ordering does not depend on the choice of µ; in particular, µ = P + Q is
possible.

It is well known that P ≤lr Q implies P ≤st Q but not vice versa. This will become even
more obvious by the following characterization of the monotone likelihood ratio order. Let
B(R) denote the Borel σ-algebra on R. Then we have

P ≤lr Q ⇐⇒ P ( · |B) ≤st Q( · |B) for all B ∈ B(R), P (B) > 0, Q(B) > 0 (1.3)

by any of [6, pp. 1217-1218], [13, Theorems 1.1, 1.3] or [8, pp. 50-52]. In fact, the ⇐=
implication is valid even if we replace B(R) by the class of all intervals in R (see [6]) or
by any smaller class C of subsets of R such that for any r < s there exists an ε > 0 and a
B ∈ C such that [r − ε, r] ∪ [s, s+ ε] ∈ B (see [13, Theorem 1.3]). In particular, if P and
Q live on a discrete subset of R, then it suffices to check the right hand side of (1.3) only
for sets B of cardinality 2.

For the binomial distributions, we have bn1,p1 ≤lr bn2,p2 if and only if p1 = 0 or

n1 ≤ n2 and
n1p1

1− p1
≤ n2p2

1− p2
. (1.4)
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(See [1, Theorem 1(iv)] for a result for a larger class of distributions that comprises the
binomial distributions.) In fact, if we exclude the trivial case p1 = 0, then n1 ≤ n2

is clearly necessary for bn1,p1 ≤lr bn2,p2 . In order to see that (1.4) is sufficient, assume
n1 ≤ n2 and let f1 and f2 be the corresponding densities, say with respect to the counting
measure on N0. Then ` = f1/f2 is decreasing if and only if for all k = 0, . . . , n1 − 1

1 ≥ f1(k + 1)/f2(k + 1)
f1(k)/f2(k)

=
p1

1− p1

1− p2

p2

n1 − k
n2 − k

.

Clearly, the expression on the right hand side is maximal for k = 0 and in this case the
inequality is equivalent to (1.4).

As the monotone likelihood ratio order is stronger than the stochastic order, it is clear
that (1.4) is sufficient for bn1,p1 ≤st bn2,p2 but it is not necessary as we will see.

Note that for the Poisson distribution, we have

Poiλ ≤st Poiµ ⇐⇒ Poiλ ≤lr Poiµ ⇐⇒ λ ≤ µ.

Hence, for this subclass of distributions, stochastic ordering and monotone likelihood ratio
ordering coincide.

1.3 Main Result

For distributions P and Q on N0, the likelihood ratio ` = f/g (see (1.2)) is given by
`(k) := P ({k})/Q({k}), k ∈ N0. Let

k∗ := min({k : (P +Q)({k}) > 0}) and k∗ = sup({k : (P +Q)({k}) > 0}). (1.5)

If k∗ = ∞, define `(k∗) := lim supk→∞ `(k), `(k∗) := lim infk→∞ `(k) and the extreme
right tail ratio

% := lim sup
k→∞

P ({k, k + 1, . . .})
Q({k, k + 1, . . .})

. (1.6)

If k∗ < ∞, define % := `(k∗). Note that `(k∗) ≤ % ≤ `(k∗). In order that P ≤st Q holds,
it is clearly necessary that

`(k∗) ≥ 1 (1.7)

and
% ≤ 1. (1.8)

Clearly, (1.8) is implied by
`(k∗) ≤ 1. (1.9)

We say that (P,Q) fulfills the left tail condition if (1.7) holds and the right tail condition
if (1.9) holds.

While we have just argued that (at least if k∗ < ∞ or if `(k) converges as k → ∞) both
tail conditions are necessary for P ≤st Q, the next theorem shows that for certain classes
of distributions, the tail conditions (1.7) and (1.9) are in fact equivalent to P ≤st Q.
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Theorem 1 In each of the following seven cases we have P1 ≤st P2 if and only if the left
and right tail conditions hold.

(a) Binomial distribution. Pi = bni,pi with pi ∈ (0, 1), ni ∈ N, i = 1, 2.
Left tail condition:

(1− p1)n1 ≥ (1− p2)n2 . (1.10)

Right tail condition:
n1 ≤ n2. (1.11)

(b) Negative binomial distribution. Pi = b−ri,pi
with ri > 0, pi ∈ (0, 1], i = 1, 2.

Left tail condition:
pr11 ≥ p

r2
2 . (1.12)

Right tail condition:
p1 ≤ p2. (1.13)

(c) Hypergeometric distribution. Pi = hypBi,Wi,ni
with B1, B2,W1,W2, ni ∈ N0,

Bi +Wi ≥ ni ≥ 1, i = 1, 2. Furthermore, assume that

B2 +W2 ≥ B1 +W1 (1.14)

or
{n1, B1, n2 −W2 − 1} ∩ {n2, B2, n1 −W1 − 1} 6= ∅. (1.15)

Define

k∗ = (n1 −W1)+ ∧ (n2 −W2)+ and k∗ = (n1 ∧B1) ∨ (n2 ∧B2).

Left tail condition:
hypB1,W1,n1

({k∗}) ≥ hypB2,W2,n2
({k∗}). (1.16)

Right tail condition:
hypB1,W1,n1

({k∗}) ≤ hypB2,W2,n2
({k∗}). (1.17)

(d) Hypergeometric versus binomial. P1 = hypB,W,m, P2 = bn,p with B,W,m, n ∈ N,
B +W ≥ m, and p ∈ (0, 1]. Left tail condition:(

W

m

)/(B +W

m

)
≥ (1− p)n. (1.18)

Right tail condition:
m ∧B ≤ n. (1.19)

(e) Binomial versus hypergeometric. P1 = bm,p, P2 = hypB,W,m, with B,W,m ∈
N0, B +W ≥ m ≥ 1, and p ∈ [0, 1]. Right tail condition:

pm ≤
(
B

m

)/(B +W

m

)
. (1.20)

Left tail condition: Is implied by the right tail condition.
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(f) Binomial versus Poisson. P1 = bn,p, P2 = Poiλ with n ∈ N, p ∈ [0, 1] and λ > 0.
Left tail condition:

(1− p)n ≥ e−λ. (1.21)

Right tail condition: Trivially fulfilled.

(g) Poisson versus negative binomial. P1 = Poiλ, P2 = b−r,p with p ∈ (0, 1) and
r, λ > 0. Left tail condition:

e−λ ≥ pr. (1.22)

Right tail condition: Trivially fulfilled.

For (a), it is obvious that (1.10) is the left tail condition and (1.11) is right tail condition.

For (b), (1.12) is obviously the left tail condition since bri,pi({0}) = prii . For the right tail
condition, note that for k ∈ N, we have∣∣∣∣(−rik

)∣∣∣∣ =
k∏
l=1

(
1 +

ri − 1
l

)
≤ exp

(
ri

k∑
l=1

1
l

)
≤ erikri .

Hence

lim
k→∞

log(b−ri,pi
({k, k + 1, . . .}))

k
= log(1− pi)

and the right tail condition (1.8) is equivalent to p1 ≥ p2.

For (c) note that k∗ and k∗ are the minimum and maximum of the support of hypB1,W1,n+
hypW2,B2,n, respectively. Furthermore, note that in the case n := n1 = n2, condition (1.15)
is satisfied. In this case the left tail condition simplifies to(

B1 +W1 − n
B1 − k∗

)(
B2 +W2

B2

)
≥
(
B2 +W2 − n
B2 − k∗

)(
B1 +W1

B1

)
(1.23)

and the right tail condition becomes(
B1 +W1 − n
B1 − k∗

)(
B2 +W2

B2

)
≤
(
B2 +W2 − n
B2 − k∗

)(
B1 +W1

B1

)
. (1.24)

For (d), (e), (f) and (g), the statements are (almost) trivial. In particular, (d) is a
consequence of (c) since bn,p is the limit of hypbpNc,b(1−p)Nc,n as N →∞ and for sufficiently
large N , condition (1.14) is satisfied. Taking a further limit we recover (a). Similarly, (e)
can be inferred from (c) noting that condition (1.15) is satisfied. In Section 2 we give the
short proofs though, in order to demonstrate the flexibility of our Method 1, described
below.

Part (a) of the theorem is not trivial but is not new either. However, in this paper we give
new and elementary proofs using different methods.

Method 1 is based on likelihood ratio considerations. We show in Proposition 2.3 that the
left and right tail condition are sufficient for stochastic ordering whenever the likelihood
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ratio ` or 1/` is a unimodal function; that is, if ` is either first monotone increasing and then
monotone decreasing or vice versa. In this case we say that P and Q have half-monotone
likelihood ratios.

Method 2 works for the binomial distribution only and relies on an explicit coupling of
two random variables Ni ∼ bni,pi , i = 1, 2, such that N1 ≤ N2 almost surely.

Method 3 also works for the binomial distribution only. Similarly to Method 2, this
method is based on the observation that bn,p can be represented as the number of nonempty
boxes when we throw a certain random Poisson number of balls into n boxes. Unlike in
Method 2, here we do not construct an explicit coupling of N1 and N2 but give a stochastic
comparison of the Markov dynamics of subsequently throwing the balls.

Method 4 works for the binomial and negative binomial distribution and relies on ex-
plicitly calculating the changes when we modify the parameter p continuously.

Method 5 uses infinite divisibility of the negative binomial distribution to give a proof
for part (b).

1.4 Organization of the Paper

In Section 1.5 we provide a brief review on stochastic orderings of Bernoulli convolutions.
In Sections 2 – 6, we give proofs of Theorem 1 using the different methods presented above.

1.5 A Review on Bernoulli Convolutions

We give a brief review on a result concerning the stochastic ordering of Bernoulli convo-
lutions (that comprises part (a) of our Theorem 1) due to Proschan and Sethuraman [7].
Fix n ∈ N and let

∆n =
{
p = (p1, . . . , pn) ∈ [0, 1]n : p1 ≥ p2 ≥ . . . ≥ pn

}
.

Let p ∈ ∆n and let X1, . . . , Xn be independent random variables with P[Xi = 1] =
1 − P[Xi = 0] = pi. Then the distribution of X1 + . . . + Xn is said to be the Bernoulli
convolution BCp with parameter p.

Let p,q ∈ ∆n. By [7, Corollary 5.2] for BCp ≤st BCq, it is sufficient that

k∏
j=1

pj ≤
k∏
j=1

qj for all k = 1, . . . , n. (1.25)

By the obvious symmetry in the problem (changing the roles of the ones and zeros), it is
also sufficient to have

n∏
j=k

(1− pj) ≥
n∏
j=k

(1− qj) for all k = 1, . . . , n. (1.26)
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Note that (1.25) and (1.26) are in fact not equivalent.

Assume n1, n2 ≤ n and p1 = . . . = pn1 , pn1+1 = . . . = pn = 0, q1 = . . . = qn2 , qn2+1 =
. . . = qn = 0. Then (1.26) is equivalent to n1 ≤ n2 and (1 − p1)n1 ≥ (1 − q1)n2 . Hence
Theorem 1(a) is a special case of the result of [7].

A special case of [7, Corollary 5.2] (which is still more general than our Theorem 1(a))
was investigated independently of Proschan and Sethuraman by Ma [4]. Ma states [4,
Theorem 1] that if q ∈ ∆n and p ∈ (0, 1), then

BCq ≤st bn,p ⇐⇒ bn,p({0}) ≤ BCq({0}). (1.27)

In fact, the condition on the right hand side of (1.27) is (1.26) (with the roles of p =
(p, . . . , p) and q interchanged). Again, by the obvious symmetry, this statement is equiv-
alent to

bn,p ≤st BCq ⇐⇒ bn,p({n}) ≤ BCq({n}). (1.28)

Since the hypergeometric distribution is a Bernoulli convolution (see [12]), Theorem 1(d)
and (e) could be inferred from (1.27) and (1.28). A limiting case of (1.27), more general
than the present Theorem 1(f), was given in [2, (A.5)].

2 Method 1: Half Monotone Likelihood Ratios

In this section we provide a criterion which, together with the left and right tail condition
(see (1.7) and (1.9)) is sufficient for stochastic ordering. We first present this method in
the general situation and then apply it to all seven cases (a) – (g) of Theorem 1.

2.1 A Special Criterion for the Stochastic Order

Definition 2.1 Let P , Q be as in Section 1.2. Define the set H of pairs (P,Q) such that
there exists a version ` of the likelihood ratio (dP/d(P + Q))

/
(dQ/d(P + Q)) with the

following properties:

(i) There exists an x0 ∈ R such that ` is monotone (increasing or decreasing) on
(−∞, x0] and is monotone on [x0,∞).

(ii) The left tail and right tail coniditions hold:

lim
x→−∞

`(x) ≥ 1 (2.1)

and
lim
x→∞

`(x) ≤ 1. (2.2)

If only (i) is fulfilled, then we write P ∼hmlr Q and say that P and Q have a half monotone
likelihood ratio.
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Remark 2.2 For distributions P and Q on N0, the quotient f/g in Definition 2.1 is the
likelihood ratio `(k) := P ({k})/Q({k}), k ∈ N0. In this case for P ∼hmlr Q it is sufficient
that

`(k + 1)
`(k)

is monotone (increasing or decreasing) for k∗ ≤ k < k∗. (2.3)

That is, (1.7), (1.9) and (2.3) imply (P,Q) ∈ H. 3

Note that the relation ∼hmlr is symmetric and reflexive, but it is not transitive. Further-
more, note that (trivially) P ≤lr Q implies (P,Q) ∈ H.

Proposition 2.3 If (P,Q) ∈ H, then P ≤st Q.

Proof. For P = Q the statement is trivial. Hence, now assume P 6= Q. Let x0 be as in
the definition of H. We will show that there exists an x1 ∈ R such that `(x) ≥ 1 for x < x1

and `(x) ≤ 1 for x > x1. Clearly, this implies P ((−∞, x]) ≥ Q((−∞, x]) for x < x1 and
P ((x,∞)) < Q((x,∞)) for x ≥ x1. Combining these two inequalities, we get P ≤st Q.

In order to establish the existence of such an x1, we distinguish three cases.

Case 1. If ` is monotone decreasing, then the statement is trivial.

Case 2. Assume that ` is monotone decreasing on (−∞, x0] and monotone increasing on
[x0,∞). Hence `(x) ≥ `(x0) for all x ∈ R which implies `(x0) < 1 unless `(x) = 1 for
all x ∈ R which was ruled out by the assumption P 6= Q. By assumption (2.2), we have
`(x) ≤ 1 for all x ≥ x0. Now take x1 = sup{x : `(x) ≥ 1} ≤ x0.

Case 3. Assume that ` is monotone increasing on (−∞, x0]. By assumption (2.1), we
have `(x0) > 1, `(x) ≥ 1 for all x ≤ x0 and ` is monotone decreasing on [x0,∞). Choose
x1 = inf{x ≥ x0 : `(x) ≤ 1}. 2

In Sections 2.2 – 2.4 we show that any two binomial distributions, negative binomial
distributions and hypergeometric distributions with the same sample size parameter, re-
spectively, have half monotone likelihood ratios. For hypergeometric distributions, we can
show this also under the assumptions of Theorem 1(c). For other distributions, this method
is not applicable in such generality. For example, hyp400,509,500 and hyp310,710,700 do not
have half monotone likelihood ratios. In fact, the likelihood ratio is increasing on {0, 1, 2}
(with maximal value > 1), decreasing on {2, . . . , 150} and increasing on {150, . . . , 400} (to
values > 1). These distributions are not stochastically ordered as

hyp400,509,500({0, . . . , k}) < hyp310,710,700({0, . . . , k}) for k ≤ 44

and
hyp400,509,500({0, . . . , k}) > hyp310,710,700({0, . . . , k}) for k ≥ 45.

On the other hand, it is simple to check numerically that hyp100,100,18 ≤st hyp21,23,22 but
that hyp100,100,18 6∼hmlr hyp21,23,22.
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It is tempting to try this method also to get a necessary condition for bn,p ≤ hypB,W,m with
m 6= n. However, here in general, we do not have hypB,W,m ∼hmlr bn,p as the following
example illustrates. Let `(k) = hyp21,23,22({k})/b18,0.5106({k}). Then `(0) = 0.0000042
and ` increases monotonically to `(13) = 2.05. Then it decreases to `(17) = 0.997 and
finally takes the value `(18) = 1.006. Although condition (ii) of Definition 2.1 is fulfilled,
we do not have (hyp21,23,22, b18,0.5106) ∈ H. In fact, hyp21,23,22 and b18,0.5106 are not
stochastically ordered since

hyp21,23,22({0})− b18,0.5106({0}) = −2.5 · 10−6 < 0

and
hyp21,23,22({0, . . . , 16})− b18,0.5106({0, . . . , 16}) = 8.4 · 10−8 > 0.

It is easy to check that b18,1/2 ≤st hyp21,23,22 although hyp21,23,22 6∼hmlr b18,1/2. In fact, the
likelihood quotient `(k) increases for k ≤ 13, then decreases to `(17) = 1.393 and finally
takes the value `(18) = 1.467.

2.2 Proof of Theorem 1(a): Binomial Distributions

Lemma 2.4 Let n1, n2 ∈ N and p1, p2 ∈ [0, 1]. Then bn1,p1 ∼hmlr bn2,p2; that is, bn1,p1

and bn2,p2 have half monotone likelihood ratios.

Proof. The cases p1 ∈ {0, 1} or p2 ∈ {0, 1} are trivial. Hence, now assume p1, p2 ∈ (0, 1).
Furthermore, due to the symmetry of ∼hmlr we may assume without loss of generality
n1 ≤ n2.

Denote by

`(k) :=
bn1,p1({k})
bn2,p2({k})

, k = 0, . . . , n1,

the likelihood ratio. We compute

`(k + 1)
`(k)

=
n1 − k
n2 − k

p1(1− p2)
(1− p1)p2

for k = 0, . . . , n1 − 1.

Since n1 ≤ n2, we see that k 7→ `(k + 1)/`(k) is monotone decreasing and hence `(k) is
first monotone increasing and then monotone decreasing. 2

Proof of Theorem 1(a). We only have to show sufficiency of the tail conditions (1.10)
and (1.11) for bn1,p1 ≤st bn2,p2 . By Proposition 2.3 and Lemma 2.4, it remains to show
(1.7) and (1.9). Since we have n2 ≥ n1, we have k∗ = 0 and k∗ = n2. Since p2 ≥ p1, we get
`(n2) = bn1,p1({n2})/bn2,p2({n2}) ≤ 1; that is, (1.9) holds. Furthermore, by assumption,
we have

bn1,p1({0}) = (1− p1)n1 ≥ (1− p2)n2 = bn2,p2({0})

which implies (1.7). 2
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2.3 Proof of Theorem 1(b): Negative Binomial Distributions

Lemma 2.5 Let r1, r2 > 0 and p1, p2 ∈ (0, 1]. Then b−r1,p1 ∼hmlr b
−
r2,p2; that is, b−r1,p1 and

b−r2,p2 have half monotone likelihood ratios.

Proof. The cases p1 = 1 or p2 = 1 are trivial. Hence, now assume p1, p2 ∈ (0, 1).
Furthermore, due to the symmetry of ∼hmlr we may assume without loss of generality
r1 ≤ r2.

Denote by

`(k) :=
b−r1,p1({k})
b−r2,p2({k})

, k ∈ N0,

the likelihood ratio. We compute

`(k + 1)
`(k)

=
r1 + k

r2 + k

1− p1

1− p2
for k ∈ N0.

Since r1 ≤ r2, we see that `(k + 1)/`(k) is monotone increasing. This implies that `(k) is
first monotone decreasing and then monotone increasing; that is b−r1,p1 ∼hmlr b

−
r2,p2 . 2

Proof of Theorem 1(b). We only have to show sufficiency of the tail conditions (1.12)
and (1.13) for b−r1,p1 ≤st b

−
r2,p2 . By Proposition 2.3 and Lemma 2.5, it remains to show

show (1.7) and (1.9). Since p1 ≥ p2, we get

lim
k→∞

(
b−r1,p1({k})
b−r2,p2({k})

)1/k

=
1− p1

1− p2
≤ 1

which implies (1.9). Furthermore, by assumption, we have

b−r1,p1({0}) = (1− p1)r1 ≥ (1− p2)r2 = b−r2,r2({0})

which implies (1.7). 2

2.4 Proof of Theorem 1(c): Hypergeometric Distributions

The left tail condition (1.16) implies (n1−W1)+ ≤ (n2−W2)+ and the right tail condition
(1.17) implies n1 ∧ B1 ≤ n2 ∧ B2. Furthermore, trivially we have P1 ≤st P2 and even
P1 ≤lr P2 if

n1 ∧B1 ≤ (n2 −W2)+ (2.4)

(and hence this condition implies the left and right tail condition). Hence in this case,
(P1, P2) ∈ H. Since this shows the theorem in the case (2.4), we may henceforth exclude
this case. That is, we assume

(n2 −W2)+ < n1 ∧B1. (2.5)
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Lemma 2.6 Assume that (1.15) holds or that (1.17) and (1.14) hold. Then we have
hypB1,W1,n1

∼hmlr hypB2,W2,n2
; that is, hypB1,W1,n1

and hypB2,W2,n2
have half-monotone

likelihood ratios.

Proof. By the discussion preceeding this lemma, we may assume

(n1 −W1)+ ≤ (n2 −W2)+ < n1 ∧B1 ≤ n2 ∧B2. (2.6)

Now let
k+ := (n2 −W2)+ ≥ k∗ = (n1 −W1)+ and

k+ := B1 ∧ n1 ≤ k∗ = B2 ∧ n2.

Further, let

`(k) :=
hypW1,B1,n1

({k})
hypW2,B2,n2

({k})

with the convention 1/0 =∞. We have

`(k)


=∞, if k∗ ≤ k < k+,

∈ (0,∞), if k+ ≤ k ≤ k+,

= 0, if k+ < k ≤ k∗.

For k ∈ I := {k∗ ∨ (k+ − 1), . . . , k∗ ∧ (k+ + 1)}, we have

q(k) :=
`(k + 1)
`(k)

=
B1 − k
B2 − k

W2 − n2 + 1 + k

W1 − n1 + 1 + k

n1 − k
n2 − k

.

(Note that q(k+ − 1) = 0 if k+ > k∗.)

We are done if we can show that q(k)−1 changes the sign at most in I. In fact, this implies
that, q(k) can cross 1 at most once. This in turn implies that ` is half-monotone on I (in
the sense of Definition 2.1(i)). Since ` is constant on {k∗, . . . , k+ − 1} (taking the value
∞) and constant on {k+ +1, . . . , k∗} (taking the value 0), we infer that ` is half-monotone
on {k∗, . . . , k∗}. Hence, by Remark 2.2, we get hypB1,W1,n1

∼hmlr hypB2,W2,n2
.

In order to show that q(k) − 1 changes the sign at most once, we have to rely on the
assumption (1.14) or (1.15).

Assume first that (1.15) holds. There are nine cases to consider and we start with the
case n1 = n2. Then for k ∈ I, we have

q(k)− 1 =
B1(W2 − n2 + 1)−B2(W1 − n1 + 1) + [B1 +W1 −B2 −W2]k

(B2 − k)(W1 − n1 + 1 + k)
.

Note that the numerator is affine linear and the denominator is positive for k ∈ I. Hence
q(k)− 1 changes its sign at most once. The other eight cases n1 = B2, n2 = B1, B1 = B2

and so on are similar resulting in an affine numerator and a denominator without sign
change.
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Now assume that (1.14) holds but (1.15) does not hold. Then k+ < k∗ and

q(k)− 1 =
p(k)
r(k)

:=
a2 k

2 + a1 x + a0

(B2 − k)(W1 − n1 + 1 + k)(n2 − k)

with
a0 =B1n1W2 −B1n1n2 +B1n1 −B2n2W1 +B2n2n1 −B2n2

a1 = −B1W2 +B1n2 −B1 +B1n1 − n1W2 − n1

+B2W1 −B2n1 +B2 −B2n2 + n2W1 + n2

a2 =B2 +W2 −B1 −W1.

For k ∈ I the denominator is positive. We have

q(k+)− 1 = −1

and hence p(k+) < 0. Since p is at most quadratic, condition (1.14) (that is, a2 ≥ 0)
implies that p changes its sign at most once on (−∞, k+]. Hence, again q(x)− 1 changes
its sign at most once. 2

Proof of Theorem 1(c). We only have to show sufficiency of the tail conditions (1.16)
and (1.17) for hypB1,W1,n ≤st hypB2,W2,n. However, this is an immediate consequence of
Proposition 2.3 and Lemma 2.5. 2

2.5 Proof of Theorem 1(d): Hypergeometric versus Binomial

For m∧B > n, the implications are clear. Hence, without loss of generality, we may and
will assume m ≤ n and B ≤ n.

Denoting the likelihood ratio by `(k) = hypB,W,m({k})/bn,p({k}), we get that

`(k + 1)
`(k)

=
(B − k)(m− k)

(W −m+ k)(n− k)
1− p
p

for k = 0, . . . , (B ∧m)− 1

is monotone decreasing and hence hypB,W,m ∼hmlr bn,p. It is a simple exercise to check
that

hypB,W,m({0})/bn,p({0}) ≥ 1 =⇒ hypB,W,m({n})/bn,p({n}) ≤ 1

and
hypB,W,m({m})/bm,p({m}) ≥ 1 =⇒ hypB,W,m({0})/bm,p({0}) ≤ 1.

Hence the left tail condition (1.18) implies (hypB,W,m, bn,p) ∈ H and thus hypB,W,m ≤st

bn,p. 2
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2.6 Proof of Theorem 1(e): Binomial versus hypergeometric

The proof of Theorem 1(e) is quite similar to the one of part (d). In fact, it is easy
to see that the right tail tail condition (1.20) implies (bm,p, hypB,W,m) ∈ H and thus
hypB,W,m ≥st bm,p. 2

2.7 Proof of Theorem 1(f): Binomial versus Poisson

Clearly, the left tail condition is necessary for bn,p ≤st Poiλ.

Hence now assume that that the left tail condition (1.21) holds. Let

`(k) =
bn,p({k})
Poiλ({k})

and compute
`(k + 1)
`(k)

=
p

(1− p)λ
(n− k) for k = 0, . . . , n.

Hence `(k + 1)/`(k) is monotone decreasing and thus bn,p ∼hmlr Poiλ. Since the right
tail condition holds trivially and the left tail condition holds by assumption, we infer
(bn,p,Poiλ) ∈ H and thus, by Proposition 2.3, we get bn,p ≤st Poiλ. 2

Of course, this result is trivial, since we can even easily derive a coupling: Let λ̂ =
− log(1− p) ≤ λ/n and let X0, X1, . . . , Xn be independent with Xi ∼ Poiλ̂ for i = 1, . . . , n
and X0 ∼ Poiλ−nλ̂. Then

S := X0 +X1 + . . .+Xn ≥ T := (X1 ∧ 1) + . . .+ (Xn ∧ 1) a.s.

and S ∼ Poiλ, T ∼ bn,p.

2.8 Proof of Theorem 1(g): Poisson versus negative binomial

Clearly, the left tail condition is necessary for Poiλ ≤st b
−
r,p. Furthermore, it is easy to see

that the right tail condition always holds.

Hence now assume that that the left tail condition (1.22) holds. Let

`(k) =
Poiλ({k})
b−r,p({k})

and compute
`(k + 1)
`(k)

=
λ

(1− p)
1

k + 1
for k ∈ N0.

Hence `(k + 1)/`(k) is monotone decreasing and thus Poiλ ∼hmlr b
−
r,p. Since the right

tail condition holds trivially and the left tail condition holds by assumption, we infer
(Poiλ, b−r,p) ∈ H and thus, by Proposition 2.3, we get Poiλ ≤st b

−
r,p. 2
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3 Method 2: Coupling

In this section, we give a proof of Theorem 1(a) that provides an explicit coupling of
two random variables Ni ∼ bni,pi such that N1 ≤ N2 almost surely. Clearly, this implies
bn1,p1 ≤st bn2,p2 .

Proof of Theorem 1(a). We only have to show sufficiency of the tail conditions (1.10)
and (1.11) for bn1,p1 ≤st bn2,p2 . Hence, assume (1.10) and (1.11). By (1.1), it suffices to
consider the smallest p2 such that (1.10) holds. That is, we may assume

(1− p1)n1 = (1− p2)n2 . (3.1)

Define
λ := −n1 log(1− p1) = −n2 log(1− p2).

For i = 1, 2, let (Xi(l), l = 1, . . . , ni) be a family of independent Poisson random variables
with parameter λ/ni. (Note that we do not require thatX1(l1) andX2(l2) be independent.)
Then

Ni = #
{
l : Xi(l) ≥ 1

}
∼ bni,pi .

The idea is to construct a coupling of the Xi(l) such that

N1 ≤ N2 almost surely. (3.2)

This clearly implies bn1,p1 ≤st bn2,p2 .

Let T be a Poisson random variable with parameter λ. Assume that for i = 1, 2, the
family (Fi,k, k ∈ N) of random variables is independent and independent of T and each
Fi,k is uniformly distributed on {1, . . . , ni}. Then

Xi(l) := #
{
k ≤ T : Fi,k = l

}
, l = 1, . . . , ni,

are independent and Poisson distributed with parameter λ/ni. The remaining task is to
construct the families (Fi,k, k ∈ N) such that (3.2) holds.

For Ai ⊂ {1, . . . , ni} let ai = #Ai and Aci = {1, . . . , ni} \ Ai. For r1 ∈ {1, . . . , n1} and
r2 ∈ {1, . . . , n2} define qA1,A2(r1, r2) depending on whether a1 < a2 or a1 ≥ a2:

If a1 < a2, then let

qA1,A2(r1, r2) =
1

n1n2
.

If a1 ≥ a2, then let

qA1,A2(r1, r2) =



1
a1n2

, if r1 ∈ A1 and r2 ∈ A2,

a1n2 − a2n1

a1n1n2(n2 − a2)
, if r1 ∈ A1 and r2 ∈ Ac2,

1
(n2 − a2)n1

, if r1 ∈ Ac1 and r2 ∈ Ac2,

0, otherwise.
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Let

qA1,A2
i (ri) =

n3−i∑
r3−i=1

qA1,A2(r1, r2)

denote the i-th marginal of qA1,A2 . Clearly, for a1 < a2 we have qA1,A2
i (ri) = 1/ni for

i = 1, 2 and ri ∈ {1, . . . , ni}. Now assume a1 ≥ a2. Then for r1 ∈ A1,

qA1,A2
1 (r1) =

a2

a1n2
+ (n2 − a2)

a1n2 − a2n1

a1n1n2(n2 − a2)
=

1
n1
.

On the other hand, for r1 ∈ Ac1,

qA1,A2
1 (r1) = (n2 − a2)

1
(n2 − a2)n1

=
1
n1
.

Analogously, we get for all r2 ∈ {1, . . . , n2}

qA1,A2
2 (r2) =

1
n2
.

Thus, independently of the choice of A1 and A2, the marginals of qA1,A2 are the uniform
distributions on {1, . . . , n1} and {1, . . . , n2}, respectively. Now, define A0,1 = A0,2 = ∅.
Inductively, choose a pair (Fk,1, Fk,2) ∈ {1, . . . , n1} × {1, . . . , n2} at random according to
qAk−1,1,Ak−1,2 and define Ak,i = Ak−1,i ∪ {Fk,i}. Clearly, aT,i = Ni, hence it is enough to
show that

ak,1 ≤ ak,2 for all k ∈ N0. (3.3)

For k = 0, (3.3) holds trivially. Now we assume that (3.3) holds for k − 1 and we show
that it also holds for k. If ak−1,1 < ak−1,2, then

ak,1 ≤ ak−1,1 + 1 ≤ ak−1,2 ≤ ak,2.

If ak−1,1 = ak−1,2, then either Fk,1 ∈ Ak−1,1, which implies ak,1 = ak−1,1 = ak−1,2 ≤ ak,2,
or Fk,1 ∈ Ack−1,1. In the latter case, according to the definition of qA1,A2 , we have Fk,2 ∈
Ack−1,2, hence

ak,1 = ak−1,1 + 1 = ak−1,2 + 1 = ak,2. 2

4 Method 3: Markov Chains

The aim of this section is to give a proof of Theorem 1(a) that uses the interpretation of the
binomial distribution as the distribution of nonempty boxes when we throw successively
balls into n boxes. In contrast to Method 2, here we do not construct an explicit coupling
of the random variables but use Markov chains in order to get a very quick and elementary
proof that could be taught in any first course on probability theory.

Let n, t ∈ N. Assume that we throw t balls independently into n boxes with numbers
1, . . . , n and denote by Nn,t the number of nonempty boxes. Let T be random and Poisson



17

distributed with parameter λ = −n log(1 − p). Assume that T is independent of the
numbers Nn,t, t = 1, 2, . . .. As indicated in Section 3, the number Nn,T is binomially
distributed with parameters n and p. Hence, in order to show Theorem 1(a), it is enough
to show the following proposition.

Proposition 4.1 For each t ∈ N, the sequence (Nn,t)n∈N is stochastically increasing.

Proposition 4.1 is in fact a special case of a more general result where the probabilities pi
for hitting box i = 1, . . . , n differ from box to box (see [14]).

Proof. For each n, (Nn,t)t=0,1,... is a Markov chain on {0, . . . , n} with transition matrix

pn(k, l) =


k/n, if l = k,

1− k/n, if l = k + 1,

0, otherwise.

Define

hn,l(k) =
n∑
j=l

pn(k, j) =


0, if k < l − 1,

1− k/n, if k = l − 1,

1, if k > l − 1,

and note that hn,l(k) is increasing in k and n.

Let m < n and note that trivially Nm,0 = 0 is stochastically smaller than Nn,0 = 0. By
induction, we show that Nm,t ≤st Nn,t for all t ∈ N0. Indeed, for every ` ∈ {0, . . . ,m}, by
the induction hypothesis and due to the monotonicity of (n, k) 7→ hn,l(k), we have

P[Nm,t+1 ≥ l] = E[hm,l(Nm,t)] ≤ E[hm,l(Nn,t)] ≤ E[hn,l(Nn,t)] = P[Nl,t+1 ≥ l].

This however implies that Nm,t+1 is stochastically smaller than Nn,t+1. 2

5 Method 4: Analytic Proof

The aim of this section is to give proofs of Theorem 1(a) and (b) that rely on changing
the parameter p of the distributions continuously and using calculus to compute the de-
pendence of the distributions on this parameter. Although the proofs for (a) and (b) are
rather similar, we felt that it is no loss in efficiency to give two separate proofs.

5.1 Proof of Theorem 1(a): Binomial Distributions

We only have to show sufficiency of the tail conditions (1.10) and (1.11) for bn1,p1 ≤st bn2,p2 .
By (1.1), we only have to consider the case n1 < n2 and (1− p1)n1 = (1− p2)n2 .



18

Let R := n2
n1
> 1 and define the map

π : [0, 1]→ [0, 1], p 7→ 1− (1− p)R. (5.1)

Denote by π′(p) = R(1− p)R−1 the derivative of π.

For n ∈ N, p ∈ (0, 1) and A ⊂ {0, . . . , n} define

b′n,p(A) =
d

dp
bn,p(A).

Computing the derivative for A = {k}, k = 0, . . . , n, explicitly yields

b′n,p({k}) = −n
[
bn−1,p({k})− bn−1,p({k − 1})

]
(where bn−1,p({−1}) = 0 and b0,p({k}) = 1 iff k = 0). Hence building a telescope sum, we
obtain

b′n,p({0, . . . , k}) = −n bn−1,p({k}) for n ∈ N, p ∈ [0, 1], k ∈ N0. (5.2)

For k ∈ N0, define the map

fk : [0, 1]→ R, p 7→ bn1,π(p)({0, . . . , k})− bn2,p
({0, . . . , k}). (5.3)

As π(p2) = p1, we have to show that fk(p2) ≥ 0 for all k. Obviously, only the case
k ∈ {1, . . . , n1 − 1} is nontrivial, and we fix such a k for the rest of this proof.

Since π(0) = 0 and π(1) = 1, we have fk(0) = fk(1) = 0. As fk is differentiable in (0, 1)
and continuous on [0, 1], it is enough to show that

f ′k(p) is strictly positive in a neighbourhood of 0 (5.4)

and
f ′k(p) = 0 for at most one p ∈ (0, 1). (5.5)

Using (5.2), we compute the derivative

f ′k(p) = π′(p)b′n1,π(p)({0, . . . , k})− b
′
n2,p

({0, . . . , k})
= n2bn2−1,p({k})− n1π

′(p)bn1−1,π(p)({k})

= n2

(
n2 − 1
k

)
pk(1− p)n2−1−k

− n1R(1− p)R−1

(
n1 − 1
k

)(
1− (1− p)R

)k(1− p)R(n1−1−k)

= n2(1− p)n2−1 ·
[(
n2 − 1
k

)(
p

1− p

)k
−
(
n1 − 1
k

)(
1− (1− p)R

(1− p)R

)k ]
.

Hence (5.4) follows from (recall R = n2/n1 > 1)

lim
p↓0

f ′k(p)
n2 pk

=
(
n2 − 1
k

)
−
(
n1 − 1
k

)
Rk > 0.
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Now for p ∈ (0, 1), we have f ′k(p) = 0 if and only if

g(p) := p(1− p)R−1 − a ·
(
1− (1− p)R

)
= 0

where

a :=

((
n1−1
k

)(
n2−1
k

))1/k

.

Since f ′k(p) > 0 for sufficiently small p > 0, also g(p) > 0 for these p. Hence in order to
show that g(p) = 0 for at most one p ∈ (0, 1), it is enough to show that g′(p) = 0 for at
most one p ∈ (0, 1). To this end we compute

g′(p) = (1− p)R−2
[
1− aR− (1− a)Rp

]
.

Hence g′(p) = 0 exactly for p = 1 and p = 1−aR
(1−a)R . As this shows (5.5), the proof is

complete. 2

5.2 Proof of Theorem 1(b): Negative Binomial Distributions

We only have to show sufficiency of the tail conditions (1.12) and (1.13) for b−r1,p1 ≤st b
−
r2,p2 .

Recall that if r1 < r2 and X1 and X2 are independent random variables with distributions
b−r1,p and b−r2−r1,p, respectively, then X1 +X2 has distribution br2,p. That is b−r1,p ≤st b

−
r2,p

if and only if r1 ≤ r2. Hence we may assume r1 ≥ r2.

Step 1. By a simple computation, we get

d

dp
b−r,p({0, . . . , k − 1}) = k

(
−r
k

)
(−1)k(1− p)k−1pr−1. (5.6)

In fact, multiplying both side in (5.6) by p−r, as functions of r,

p−r
d

dp
b−r,p({0, . . . , k − 1}) and k

(
−r
k

)
(−1)k(1− p)k−1p−1

are polynomials. Hence, it is enough to check (5.6) for all r ∈ N. Either by a direct
computation or by appealing to the waiting time interpretation that in a Bernoulli chain
with success probability p, b−n,p is the distribution of the number of failures before the nth
success occurs, we get

b−n,p({0, . . . , k − 1}) = bn+k−1,1−p({0, . . . , k − 1}).

Hence by (5.2), we get

d

dp
b−n,p({0, . . . , k − 1}) = (n+ k − 1)bn+k−2,1−p({k − 1}) = k

(
−n
k

)
(−1)k(1− p)k−1pn−1

as desired.
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Step 2. Let R = r2/r1 < 1. Fix k ∈ N. For p ∈ (0, 1] define

f(p) := b−
r1,pR({0, . . . , k − 1})− b−r2,p({0, . . . , k − 1}).

It is enough to show that f(p) > 0 for all p ∈ (0, 1].

Clearly, f(1) = 0 and limp↓0 f(p) = 0. Hence it is enough to show that f ′(p) > 0 for p
sufficiently small and f ′(p) = 0 for at most one p ∈ (0, 1). By (5.6), we have

f ′(p) = kpr2−1

[(
r1 + k − 1

k

)
R(1− pR)k−1 −

(
r2 + k − 1

k

)
(1− p)k−1

]
.

Hence

lim
p↓0

f ′(p)
kpr2−1

=
(
r1 + k − 1

k

)
Rk −

(
r2 + k − 1

k

)
> 0.

Define
g(p) := c (1− pR)− (1− p),

where

c :=

((
r1+k−1

k

)
R(

r2+k−1
k

) )1/(k−1)

.

Clearly, g(p) = 0 if and only if f ′(p) = 0. It is easy to see that g(1) = 0 and g′(p) = 0 if
and only if p = (cR)1/(1−R). This implies that g(p) = 0 for at most one p ∈ (0, 1). 2

6 Method 5: Infinite Divisibility

In this section, for infinitely divisible distributions on [0,∞), we derive a sufficient criterion
(Lemma 6.1) for stochastic ordering in terms of the Lévy measures. We use this criterion
to give a short proof of Theorem 1 for negative binomial distributions.

6.1 Stochastic Ordering of Infinitely Divisibly Laws

An infinitely divisible distribution P on [0,∞) is characterized by the deterministic part
αP ∈ [0,∞) and the Lévy measure νP on (0,∞). The connection is given via the Lévy-
Khinchin formula (see, e.g., [3, Theorem 16.14])

− log
(∫

e−tx P (dx)
)

= αP t+
∫ (

1− e−tx
)
νP (dx) for all t ≥ 0. (6.1)

If µ and ν are two measures on arbitrary measurable spaces, we write µ ≤ ν if µ(A) ≤ ν(A)
for every measurable set A. If X is a nonnegative infinitely divisible random variables with
distribution PX , we write νX = νPX

and αX = αPX
for the corresponding characteristics.
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If X and Y are independent, then νX+Y = νX + νY and αX+Y = αX + αY . Thus for
infinitely divisible distributions P and Q, we have

αP ≤ αQ and νP ≤ νQ =⇒ P ≤st Q. (6.2)

(The opposite implication is not true.) For example, the negative binomial distribution
b−r,p is infinitely divisible with vanishing deterministic part and with Lévy measure νr,p
concentrated on N and given by

νr,p({k}) = lim
λ↓0

λ−1b−λr,p({k}) = r
(1− p)k

k
for k ∈ N. (6.3)

In fact, a direct computation yields

− log
∞∑
k=0

b−r,p({k})e−tk = r log
(
p−1(1− (1− p)e−t)

)
=
∞∑
k=1

νr,p({k})
(
1− e−tk

)
.

Note that νr1,p1 ≤ νr2,p2 if p1 = p2 and r1 ≤ r2 or if r1 = r2 and p1 ≥ p2. Hence, similarly
as for the binomial distribution, by (6.2), we get the two relations (for all p ∈ (0, 1) and
r > 0)

b−r1,p ≤st b
−
r2,p ⇐⇒ r1 ≤ r2 (6.4)

and
b−r,p1 ≤st b

−
r,p2 ⇐⇒ p1 ≥ p2. (6.5)

For the case where both parameters differ, we need a more subtle criterion. Let µ1 and
µ2 be two measures on (0,∞) with µi([x,∞)) <∞ for all x ∈ (0,∞), i = 1, 2. Extending
the notion of stochastic ordering to such measures, we write µ1 ≤st µ2 if

µ1([x,∞)) ≤ µ2([x,∞)) for all x ∈ (0,∞). (6.6)

Note that µ1 ≤ µ2 implies µ1 ≤st µ2.

For a multi-dimensional version of the following lemma, see [9, Theorem 2.2].

Lemma 6.1 Let Pi, i = 1, 2, be infinitely divisible distributions on [0,∞) with determin-
istic parts αi and Lévy measures νi. Assume that

α1 ≤ α2 and ν1 ≤st ν2.

Then there exist random variables Z1 and Z2 with distributions P1 and P2, respectively,
such that Z1 ≤ Z2 almost surely. In particular, we have P1 ≤st P2.

Proof. It is enough to consider the situation α1 = α2 = 0. Let

Gi(x) = νi([x,∞)) for all x ∈ (0,∞)

and define the inverse function

G−1
i (y) := inf

{
x ≥ 0 : Gi(x) ≤ y

}
for y ∈ (0,∞).
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Let X be a Poisson point process on (0,∞) with rate 1. That is, X is an integer valued
random measure on (0,∞), for bounded measurable sets A, X(A) is Poisson distributed
with the Lebesgue measure of A as parameter, and for pairwise disjoint sets, the values of
X are independent random variables. Define

Zi :=
∫
G−1
i (y)X(dy), i = 1, 2.

Then for t ≥ 0, we have (compare [3, Theorem 24.14])

− log E
[
e−tZi

]
=
∫ ∞

0

(
1− e−tG

−1
i (y)

)
dy =

∫ (
1− e−ty) νi(dy)

= − log
∫
e−tx Pi(dx).

Thus Zi has distribution Pi. By the assumption G1 ≤ G2, we have G−1
1 ≤ G−1

2 and hence
Z1 ≤ Z2 almost surely. 2

6.2 Proof of Theorem 1(b)

We only have to show sufficiency of the tail conditions (1.12) and (1.13) for b−r1,p1 ≤st b
−
r2,p2 .

Recall from (6.3) that the negative binomial distribution b−ri,pi
is infinitely divisible with

deterministic part αri,pi = 0 and Lévy measure νri,pi being concentrated on N and given
by

νri,pi({k}) = ri
(1− pi)k

k
for all k ∈ N.

As p1 ≥ p2, we have νr1,p1 ≤lr νr2,p2 ; that is, the map

k 7→ νr1,p1({k})
νr2,p2({k})

=
r1
r2

(1− p1)k

(1− p2)k

is monotone decreasing. This implies that

k 7→ φ(k) :=
νr1,p1({k, k + 1, . . .})
νr2,p2({k, k + 1, . . .})

=
r1
r2

∑∞
l=k l

−1(1− p1)l∑∞
l=k l

−1(1− p2)l

is monotone decreasing. By the assumption pr11 ≥ p
r2
2 , we have

φ(1) =
r1 log(p1)
r2 log(p2)

≤ 1.

Hence φ(k) ≤ 1 for all k ∈ N; that is νr1,p1 ≤st νr2,p2 and thus b−r1,p1 ≤st b−r2,p2 by
Lemma 6.1. 2
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6.3 Proof of Theorem 1(g)

When viewed from the perspective of infinitely divisible distributions, the statement of
Theorem 1(g) is trivial. In fact, b−r,p is infinitely divisible and the Lévy measure νr,p
has total mass νr,p(N) = −r log(p). Since Poiλ is infinitely divisible with Lévy measure
νλ = λδ1, we see that νλ ≤st νr,p if and only if e−λ ≥ pr. Hence, the claim follows using
Lemma 6.1. 2
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[8] Ludger Rüschendorf. On conditional stochastic ordering of distributions. Adv. in
Appl. Probab., 23(1):46–63, 1991.

[9] Gennady Samorodnitsky and Murad S. Taqqu. Stochastic monotonicity and Slepian-
type inequalities for infinitely divisible and stable random vectors. Ann. Probab.,
21(1):143–160, 1993.



24

[10] Moshe Shaked and J. George Shanthikumar. Stochastic orders. Springer Series in
Statistics. Springer, New York, 2007.

[11] R. Szekli. Stochastic ordering and dependence in applied probability, volume 97 of
Lecture Notes in Statistics. Springer-Verlag, New York, 1995.

[12] V.A. Vatutin and V.G. Mikhajlov. Limit theorems for the number of empty cells
in an equiprobable scheme for group allocation of particles. Theory Probab. Appl.,
27:734–743, 1982.

[13] Ward Whitt. Uniform conditional stochastic order. J. Appl. Probab., 17(1):112–123,
1980.

[14] C. K. Wong and P. C. Yue. A majorization theorem for the number of distinct
outcomes in N independent trials. Discrete Math., 6:391–398, 1973.


