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Abstract

Super Brownian motion is known to occur as the limit of properly rescaled interacting particle systems
such as branching random walk, the contact process and the voter model.

In this paper we show that certain linearly interacting diffusions converge to super Brownian motion
if suitably rescaled in time and space. The results comprisenearest neighbor interaction as well as long
range interaction.
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1 Introduction

1.1 Motivation

Super Brownian motion has first been derived as the high density/ short lifetime diffusion limit of branching
Brownian motions. See [Daw93] for a survey. More recently ithas also been found that particle systems
where particles have less independence than in branching processes, namely the contact process and the
voter model, have super Brownian motion as diffusion limit.This is particularly interesting because the
local activity in these processes is heavily dependent on the (local) density of particles. For dimension
d = 1 Mueller and Tribe [MT95] show that the contact process can berescaled to a super Brownian
motion with a drift that depends on the local intensity of particles. On the other hand the limit of the one–
dimensional voter model is a super Brownian motion where thelocal branching rate is a decreasing function
γ(θ) = 1 − θ of the local intensityθ ∈ [0, 1] of particles.

In higher dimensions the dependence on the local density of particles gets washed out and in the limit
the actual intensity of particles has to be replaced by its expected value. See [DP99] and [CDP00] for the
results on the contact process and the voter model respectively.

1.2 Our Model

The model that we study in this paper is that of linearly coupled diffusions indexed byZd, d ≥ 3. More
precisely, we consider the process(Xt)t≥0 that takes values in a suitable subspaceX of [0,∞)Z

d

and that
is the unique strong solution of the stochastic differential equation

dXt = AXtdt +
√

g(Xt) dBt, (1.1)

whereA is theq–matrix of a random walk onZd, and

g : [0,∞) → [0,∞) is locally Lipschitz continuous

g−1((0,∞)) = (0, b) for someb ∈ (0,∞]

g(z) ≤ C(1 + z2) for someC < ∞.

(1.2)

Finally, {(Bt(i))t≥0, i ∈ Z
d} is an independent family of standard Brownian motions. Ifb < ∞, then

X = [0, b]Z
d

is the natural choice. Ifb = ∞, we have to be a bit more careful. In this case we letX be a
Liggett-Spitzer space with respect toA. (Essentially this is a subset of[0,∞)Z

d

with a polynomial growth
condition. As we do not deal with this case here, we do not describe the Liggett-Spitzer space in detail but
only refer to [LS81].) It is well known (see [SS80]) that under these conditions, forX0 ∈ X there exists a
unique strong solution of (1.1) that assumes values inX.

Since we want to rescale this process to super Brownian motion we have to assume thatA is of finite
variance. For simplicity of notation we will assume that therandom walk generated byA is driftless and
the coordinates are uncorrelated with the same variance:

∑

i∈Zd

A(0, i)iαiβ = σ21α=β , α, β ∈ {1, . . . , d}. (1.3)

We now rescale the space and the diffusion speed as well as themass of the particles. To this end define
for N ∈ N andt ≥ 0 the random measure

XN
t =

1

N

∑

i∈Zd

XtN (i)δi/
√

N , (1.4)

whereδ denotes the Dirac measure. Further letMf(Rd) denote the space of finite Borel measures onR
d

equipped with the vague topology. The idea is that if the initial state converges to a finite measure

XN
0

N→∞−→ µ ∈ Mf (Rd) (1.5)
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thenXN also converges asN → ∞ to super Brownian motion with some branching rateγ. The next step is
to define this branching rateγ in terms of the ingredients forX . To this end we have to make the additional
assumption thatb < ∞ and thatg is of the Wright-Fisher form

g(x) = κx(1 − x

b
)+, x ≥ 0, (1.6)

for someκ > 0.
Note that the assumptions we have made imply that for everyθ ≥ 0 there exists a unique stationary

ergodic invariant measureνb,κ
θ for X with intensityθ, that is,

∫
νb,κ

θ (dx)x(i) = θ, i ∈ Z
d. (1.7)

See [CG94]. Denote byq the probability that that a random walk with the symmetrizedq–matrix

Â :=
1

2
(A + AT ) (1.8)

does not return to the origin after first leaving it. This probability is positive sinceA is transient and it can
be expressed asq = (−Ĝ(0, 0)Â(0, 0))−1, where(exp(tÂ))t≥0 is the semigroup of âA–random walk and
Ĝ its Green function

Ĝ(i, j) =

∫ ∞

0

exp(tÂ)(i, j) dt, i, j ∈ Z
d.

This can easily be seen using the following argument: LetZ be random walk withq–matrixÂ starting in
Z0 = 0 and defineτ0 := inf{t > 0 : Zt 6= 0}, τ1 := inf{t > τ0 : Zt = 0}. Hence a simple renewal
argument shows

Ĝ(0, 0) = E

[∫ ∞

0

1Zt=0 dt

]
= E[τ0] + P[τ1 < ∞]E

[∫ ∞

0

1Zt=0 dt

]
.

= (−Â(0, 0))−1 + (1 − q)Ĝ(0, 0).

Lemma 1.1 The limit

γ := γb,κ := lim
θ↓0

θ−1

∫
νθ(dx)g(x(0)) (1.9)

exists and is equal to

γb,κ =
2bqκ

2bq + κ
. (1.10)

We prove this lemma in Section 2 by a straightforward computation using the duality of interacting Wright-
Fisher diffusions to coalescing random walks. The main point about the assumption thatg is of the Wright-
Fisher type is that we could not establish (1.9) by other means (though forg(x) = γx it is trivial). In other
cases, as for exampleg(x) = x2((b − x)+)2, one can show thatγ = 0.

In order to formulate our first theorem letY γ,σ2

denote super Brownian motion inRd with branching

rateγ and (spatial) diffusion constantσ2 > 0. That is, forY γ,σ2

0 = µ ∈ Mf (Rd), Y γ,σ2

is the unique
solution of the martingale problem: Forϕ ∈ C2

0 (Rd),

Mϕ
t := Y γ,σ2

t (ϕ) −
∫ t

0

Y γ,σ2

s

(
σ2

2
∆ϕ

)
ds (1.11)

is a continuous square-integrable martingale with square variation process

〈Mϕ〉t =

∫ t

0

Y γ,σ2

s

(
γϕ2

)
ds (1.12)

(see [Daw93]). We suspect that the statement of the following theorem is true for allg fulfilling (1.2).
However we could show it only forg of the Wright–Fisher form.
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Theorem 1 Under the assumptions(1.3), (1.5), and(1.6), and withγ from (1.10), the rescaled processXN

converges asN → ∞ in distribution on the Skorohod spaceD([0,∞) : Mf (Rd)) to Y γ,σ2

.

Note that the voter model is the limit of interacting Wright-Fisher diffusions withb = 1 andκ → ∞.
Letting κ → ∞ in (1.10) leads in fact to the same branching rate for the limiting super Brownian motion
as established for the voter model in [CDP00]. On the other hand, lettingb → ∞ with fixed κ one might
expect to end up with the same branching rate that one gets from rescaling interacting Feller’s branching
diffusions (b = ∞, g(x) = κx), namely withκ. This is in fact true sinceγb,κ → κ asb → ∞.

Remark 1.2 Without the spatial rescaling one might wonder whether there is convergence to super random
walk Ȳ γ with some branching rateγ and jump matrixAT . This is in fact true if one defines̄XN

t =
∑

i∈Zd NXt(i)δi. If g fulfills (1.2) and in addition is differentiable in0 with g′(0) = γ, thenX̄N N→∞−→ Ȳ γ .
This statement can easily be shown using the comparison technique of [CFG96] and a truncation argument.
In fact, using the fact thatsupz>0

g(z)
z < ∞ we can bound the variance of the total mass‖XN

T ‖ for every
fixedT . Using Doob’s inequality we get that for everyε > 0 there is aK < ∞ such that

P

[
sup
N≥1

sup
t∈[0,T ]

‖XN
t ‖ > K

]
< ε.

Hence we can changeg to

g̃(z) :=

{
g(z), z ≤ K/N

N
K g(K/N) · z, z ≥ K/N

and with high probabilityX̄N and the corresponding̃XN coincide up to timeT . Now defineγN,+ =

supz∈(0,K/N)
g(y)

y andγN,− = infz∈(0,K/N)
g(y)

y andgN,±(z) = γN,±z. HencegN,− ≤ g̃N ≤ gN,+. The
comparison scheme of [CFG96] now yields that for a certain distribution determining class of continuous
functionalsF of (Xt)t∈[0,T ]

E[F (Ȳ γN,−

)] = E[F (X̃N,−)] ≤ E[F (X̃N)] ≤ E[F (X̃N,+)] = E[F (Ȳ γN,+

)]

andγ̃ 7→ E[F (Ȳ γ̃)] is monotone. AsγN,+ ↓ γ andγN,− ↑ γ one gets

lim
N→∞

E[F (X̃N)] = E[F (Ȳ γ)].

ThusX̃N N→∞−→ Ȳ γ and hence alsōXN N→∞−→ Ȳ γ .

1.3 The Long Range Model

We would have liked to formulate our Theorem 1 for more general functionsg, however we could not
establish Lemma 1.1 for the general case. One way to overcomethis problem is to change the scaling of
the model such that the range of interaction gets larger and larger and the limit of the equilibriaνN

θ can be
described via the mean field equation.

That is, in the limitN → ∞ underνN
θ (dx) the coordinates ofx are independent and are distributed

according to the unique invariant measureν̄c,g
θ of the one-dimensional diffusion

dZt = c(θ − Zt)dt +
√

g(Zt) dBt. (1.13)

Herec > 0 is a constant that reflects the strength of the interaction. Note thatZt solves the integral equation

Zt = θ +

∫ t

0

ec(s−t)
√

g(Zs) dBs + e−ct(Z0 − θ). (1.14)
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The idea is that any given coordinate interacts with so many other coordinates that a law of large num-
bers applies. Note that̄νc,g

θ has a density that can be computed explicitly

ν̄c,g
θ (dz)

dz
= Cc,g

θ

1

g(z)
exp

(
−2c

∫ z

θ

r − θ

g(r)
dr

)
. (1.15)

HereCc,g
θ is a normalizing constant. To see that this is the equilibrium density, note thatZ has generator

Gf(z) = c(θ − z)f ′(z) + 1
2g(z)f ′′(z) with the adjointG∗f(z) = c d

dz ((θ − z)f(z)) + d2

dz2 (g(z)f(z)) and
compute

G∗ dν̄c,g
θ (dz)

dz
= 0.

Using (1.14) we see thatEθ[Zt] = θ for all t ≥ 0 and thusEν̄c,g

θ [Z] = θ. Using (1.14) again we get

Var
ν̄c,g

θ [Z0] = Var
ν̄c,g

θ [Zt] =

∫ t

0

e2c(t−s)
E

ν̄c,g

θ [g(Zs)] ds + e−2ct
Var

ν̄c,g

θ [Z0].

Using stationarity we can lett → ∞ and get

Var
ν̄c,g

θ [Z0] =

∫ ∞

0

e−2cs dsE
ν̄c,g

θ [g(Z0)].

Thus ∫
ν̄c,g

θ (dz)(z − θ)2 =
1

2c

∫
ν̄c,g

θ (dz)g(z). (1.16)

The explicit form of ν̄c,g
θ allows us to show thatγ can be defined as in Lemma 1.1. We quote the

following lemma from Baillon et al. [BCGdH95, Proposition 5] (the uniformity that we state here is not in
[BCGdH95] but follows very easily from their argument).

Lemma 1.3 The limit

γc,g := lim
θ↓0

θ−1

∫
ν̄c,g

θ (dz)g(z) (1.17)

exists andγc,g > 0 if and only if ∫ b/2

0

z

g(z)
dz < ∞. (1.18)

In this case the limit in(1.17)is uniform inc on compact subsets of(0,∞) and

γc,g = 2c

∫ b

0

exp

(
−2c

∫ y

0

z

g(z)
dz

)
dy. (1.19)

In the case whereg is of the Wright-Fisher type it is simple to computeγc,g explicitly.

Corollary 1.4 If g(x) = κx(1 − x/b)+, thenγc,g = 2cbκ
κ+2cb .

We will henceforth assume that that (1.18) holds. Note that this is the case for example ifg has a positive
derivative at0 or if g(x) ∼ x1+β asx → 0 for someβ ∈ [0, 1). On the other hand, forg(x) = x2((b−x)+)2

the condition is violated.
Let us now define the long range modelsX̄N . Let (MN )N∈N be a sequence inN that increases to∞.

This sequence is arbitrary but will be kept fixed. Letσ2 > 0 and define

AN (i, j) = 3σ2
[
(2MN + 1)−d1{−MN ,...,MN}d(j − i) − 1{0}(j − i)

]
. (1.20)

That is,AN is theq-matrix of a rate3σ2 (more precisely:3σ2(1− (2MN +1)−d)) random walk that jumps
to each point in distance at mostMN with equal probability. Forϕ : R

d → R define

ÃNϕ(x) = N
∑

j∈Zd

AN (0, j)ϕ(x + N−1/2M−1
N j) (1.21)
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Lemma 1.5 For ϕ ∈ C2
0 (Rd) andx ∈ R

d

lim
N→∞

‖ÃNϕ − σ2

2
∆ϕ‖∞ = 0. (1.22)

Now defineX̄N as the solution of (1.1) but withA replaced byAN and let

XN
t =

1

N

∑

i∈Zd

X̄N
tN (i)δi/(MN

√
N), (1.23)

Again we could establish the following theorem only wheng is of the Wright–Fisher form where we
can exploit the well-known duality of interacting Wright–Fisher diffusions to coalescing random walks (see
[Shi80, Lemma 2.3]. We give more details in the next section.However also here we suspect that the
statement is true forg fulfilling only (1.2).

Theorem 2 Under condition(1.5)and(1.6)with γ = γ3σ2,g

L[XN ]
N→∞
=⇒ Lµ[Y γ,σ2

] (1.24)

1.4 Outline

In the next two sections we give the proofs of Theorem 1 and 2 respectively. The proofs rely on the duality
of X to coalescing random walks and make use of the ideas and statements developed in [CDP00].

2 Proof of Theorem 1

Before we come to the proof of the theorem we prove the lemma that precedes it.

Proof of Lemma 1.1

If we include for the moment the dependence ofX on the parametersb andκ in the notation we can write
down the following scaling property:

Lx[Xb,κ] = Lx/b[bX1,κ/b]. (2.1)

The verification is elementary and is omitted here. Note thatwe can conclude from (2.1) thatγb,κ = bγ1,κ/b.
Hence it suffices to show the lemma forb = 1.

Let us recall that then–th moments of interacting Wright–Fisher diffusions can becomputed via a
duality relation with a system ofn coalescing random walks. See [Shi80, Lemma 2.3] for a full account of
this. We need here only the first and second moment. LetZ1 andZ2 be random walks withq-matrixAT

that coalesce at rateκ when they occupy the same site. Then the duality yields

E[Xt(z
1)] = E

z1

[X0(Z
1
t )] = E[etAT

X0(z
1)] (2.2)

E[Xt(z
1)Xt(z

2)] = E
(z1,z2)[X0(Z

1
t )X0(Z

2
t )]. (2.3)

In particular, forX0 ≡ θ
Var

θ[Xt(0)] = θ(1 − θ)P(0,0)[Z1
t 6= Z2

t ].

Letting t → ∞ we get

Var
νθ [X0(0)] = θ(1 − θ)P[Z1 andZ2 do not coalesce].
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This latter probability can be computed in terms of the escape probability ofq of the difference walk (which
hasq–matrix2Â) as 2q

2q+κ . Hence we have

θ−1

∫
νθ(dx)g(x0) =

κ

θ

∫
νθ(dx)x(0)(1 − x(0))

= κ

(
1 − 1

θ

∫
νθ(dx)x(0)2

)

= κ

(
1 − θ − 1

θ
Var

νθ [X0(0)]

)

=
2qκ

2q + κ
(1 − θ).

(2.4)

This clearly implies the assertion of the lemma. 2

Proof of Theorem 1

The strategy of the proof is to describe the processXN via a martingale problem and to show that the
quadratic variation process converges to that of super Brownian motion. Here we make use of the duality
of interacting Wright Fisher diffusions to coalescing random walks. In fact, the proof is quite similar to the
one given in [CDP00] for the voter model and we carry out in detail only the part that differs.

For ease of notation write

ANϕ(x) = N
∑

i∈Zd

ϕ(x + i/
√

N)A(0, i)

and note that forϕ ∈ C2
0 (Rd)

ANϕ(x)
N→∞−→ σ2

2
∆ϕ(x). (2.5)

To meet the technical requirements of [CDP00] we will assumethatϕ ∈ C3
0 (Rd) in which case the conver-

gence in (2.5) is uniform if the second and third derivativesof ϕ are bounded (see Lemma 2.6 of [CDP00]):
If we let

‖ϕ‖2,3 := sup
{ d2

dxidxj
ϕ(x), i, j = 1, . . . , d, x ∈ R

d
}

+ sup
{ d3

dxidxjdxk
ϕ(x), i, j, k = 1, . . . , d, x ∈ R

d
}

,

then

lim
N→∞

sup
‖ϕ‖2,3<K

∥∥∥∥A
Nϕ − σ2

2
∆ϕ

∥∥∥∥
∞

= 0, K < ∞.

We abbreviate
ΓN

s :=
∑

x∈Zd/
√

N

N−1g
(
NXN

s ({x})
)
δx

=
∑

i∈Zd

N−1g
(
NXsN (i)

)
δi/

√
N

It is an exercise in stochastic calculus to check that

Mϕ,N
t := XN

t (ϕ) − XN
0 (ϕ) −

∫ t

0

XN
s

(
ANϕ

)
ds (2.6)
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is a continuous square integrable martingale with quadratic variation process

〈Mϕ,N〉t =

∫ t

0

ΓN
s

(
ϕ2

)
ds. (2.7)

With a view to (1.11), (1.12) and (2.4) it is clear that the main point is to show that

〈Mϕ,N 〉t −
∫ t

0

γXN
s

(
ϕ2

)
ds

N→∞−→ 0. (2.8)

More precisely, the convergence has to be shown to take placein L2.

In fact, the martingale problem has exactly the form of Theorem 2.1 of [CDP00] with their error term
εN

s being zero and with theirV ′
N,s(x) replaced by1

2N−1g(NXN
s ({x})). We proceed as in Section 4 of

[CDP00] and define forK > 0

εN,γ
K,ϕ(t) := sup

{∣∣E
[
(ΓN

t − γXN
t )

(
ϕ2

) ]∣∣ : XN
0 (1) ≤ K

}
. (2.9)

We have to show the following lemma.

Lemma 2.1 (Convergence of the Mean)

lim
N→∞

εN,γ
K,ϕ(t) = 0. (2.10)

For the proof of our Theorem 1, convergence of the means of thequadratic variation process is not enough
but L2–convergence is needed. Together with the following momentbounds Theorem 4.1 of [CDP00]
improves (2.10) toL2–convergence and in fact yields the conclusion of the proof of Theorem 1.

Lemma 2.2 (Moment bounds) Fix T > 0. There exists a constantCT < ∞ such that for alls ∈ [0, T ]

E
[
ΓN

s (1)
]
≤ CT XN

0 (1) , (2.11)

E[XN
s (1)

3
] ≤ CT

(
XN

0 (1)
3
+ 1

)
, (2.12)

E

[
XN

s (1)
2

ΓN
s (1)

]
≤ CT

(
XN

0 (1)
3
+ 1

)
. (2.13)

Proof Let L denote the Lipschitz constant ofg. Then

ΓN
s (1) ≤ LXN

s (1) .

Hence (2.11) holds withCT = L. Also (2.13) holds withCT replaced byLCT . Now note that Ito’s formula
yields

d

ds
E[XN

s (1)
3
] ≤ 3LE[XN

s (1)
2
]

and
d

ds
E[XN

s (1)
2
] ≤ LE[XN

s (1)] = LXN
0 (1) .

Thus

E[XN
s (1)

3
] ≤ XN

0 (1)
3
+ 3LT XN

0 (1)
2
+

3

2
L2T 2 XN

0 (1) .

Of course,CT can be chosen such that (2.12) holds. 2
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Proof of Lemma 2.1

Note that so far we could adopt the arguments of of [CDP00] without using the fact thatg is of the Wright–
Fisher form. We will need it only here (and in Lemma 1.1) to exploit the duality to coalescing random
walks in order to show (2.10).

Recall that

g(x) = κx(1 − x/b)+ and γ =
2bqκ

2bq + κ
,

whereq is the escape probability of âA-random walk (recall (1.8)). Recall also from the proof of Lemma 1.1
that we can use a scaling argument to that without loss of generality we may assumeb = 1. Hence we have

εN,γ
K,ϕ(t) = κ sup





∣∣∣∣∣∣
E




∑

x∈Zd/
√

N

((
1 − γ

κ

)
XN

t ({x}) − NXN
t ({x})2

)
ϕ2(x)




∣∣∣∣∣∣
: XN

0 (1) ≤ K



 .

(2.14)
Now let Z1 andZ2 be random walks withq–matrixAT that coalesce at rateκ when they are at the same
site. Denote bypt = etAT

the transition probability ofZ1. Let At be the event thatZ1 andZ2 have
coalesced by timet andA := ∪t≥0At. The duality yields, see (2.3), (withZ1 = Z2 = i)

NE
[
XN

t ({i/
√

N})2
]

= N−1
E[XtN(i)2]

= N−1
E

i[X0(Z
1
tN ); AtN ] + N−1

E
i[X0(Z

1
tN )X0(Z

2
tN ); Ac

tN ].
(2.15)

Using the central limit theorem, there exists a constantC < ∞ such that

pt(0, j) ≤ (t−d/2 ∧ 1) · C, j ∈ Z
d, t > 0. (2.16)

Thus, sinceXN
0 (1) ≤ K, the second term on the right hand side is smaller than

N−1
E

i[X0(Z
1
tN )]2 ≤ NK2 sup

j∈Zd

ptN (0, j)2 ≤ Ct−dK2 · N1−d. (2.17)

Hence we have ∑

i∈Zd

N−1
E

i[X0(Z
1
tN )]2ϕ(i/

√
N)2 ≤ C Cϕ K2t−dN1−d/2, (2.18)

where the constantCϕ depends onϕ only. Hence by dominated convergence it suffices to show thatfor all
i ∈ Z

d

ε̃N,γ,i
K (t) := Nd/2−1 sup

{∣∣∣Ei[X0(Z
1
tN ); Ac

tN ] − γ

κ
E

i[X0(Z
1
tN )]

∣∣∣ : X0 (1) ≤ KN
}

N→∞−→ 0. (2.19)

However this is true since (see the proof of Lemma 1.1)

lim
T→∞

P[Ac
T ] = 1 − P[A] =

γ

κ
(2.20)

and the distribution ofZ1
tN and the conditional distribution ofZ1

tN given Ac
tN are close. To make this

precise, letδ > 0 be arbitrary. FixT0 > 0 such that (withC as in (2.16))

∣∣∣P[Ac
T ] − γ

κ

∣∣∣ ≤ (t/2)d/2

C
δ, for all T ≥ T0. (2.21)
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Estimating the total amount of time two independent random walks spend together gives a bound on the
probability thatZ1 andZ2 coalesce between timeT andtN and end in a particular pointj

P
i[AtN ∩ Ac

T ∩ {Z1
tN = j}] ≤ κ

∫ tN

T

dr
∑

k∈Zd

pr(i, k)pr(i, k)ptN−r(k, j)

≤ κptN (i, j) ·
∫ tN

T

dr sup
k

pr(0, k)

≤ κC2t−d/2N−d/2

∫ tN

T

r−d/2 dr

≤ 2κC2t−d/2

d − 2
T 1−d/2N−d/2.

(2.22)

Hence by choosingT0 large enough, in addition to (2.21) we may assume

sup
j∈Zd

P
i[AtN ∩ Ac

T ∩ {Z1
tN = j}] ≤ δN−d/2, T ≥ T0. (2.23)

Let R > 0 be such that

P
i[|Z1

T0
| > R] <

δ

(1 + (γ/κ))(1 + (2/t)d/2C)
. (2.24)

Using (2.16) and the Markov property at timeT0 we get forN ≥ 2T0/t
(
1 +

γ

κ

)
P

i[|Z1
T0
| > R; Z1

tN = j] ≤ δN−d/2. (2.25)

Using the central limit theorem again we get that there exists anN0 ≥ 2T0/t such that for allN ≥ N0 and
|k| < R

∣∣ptN−T0
(k, j) − ptN−T0

(0, j)
∣∣ <

δ

1 + (γ/κ)
N−d/2. (2.26)

Combining (2.23), (2.25), (2.26), (2.16), (2.24), (2.21),and using the Markov property we get forN ≥ N0

∣∣∣Pi[Z1
tN = j; Ac

tN ] − γ

κ
P

i[Z1
tN = j]

∣∣∣

≤
∣∣Pi[Z1

tN = j; Ac
T0

] − γ

κ
P

i[Z1
tN = j]

∣∣ + δN−d/2

≤

∣∣∣∣∣∣

∑

|k|<R

P
i[Z1

tN = j; Z1
T0

= k; Ac
T0

] − γ

κ
P

i[Z1
tN = j; Z1

T0
= k]

∣∣∣∣∣∣
+ 2δN−d/2

=

∣∣∣∣∣∣

∑

|k|<R

ptN−T0
(k, j)

(
P

i[Z1
T0

= k; Ac
T0

] − γ

κ
P

i[Z1
T0

= k]
)
∣∣∣∣∣∣
+ 2δN−d/2

≤
∣∣∣Pi[|Z1

T0
| < R; Ac

T0
] − γ

κ
P

i[|Z1
T0
| < R]

∣∣∣ · ptN−T0
(0, j) + 3δN−d/2

≤
∣∣∣Pi[Ac

T0
] − γ

κ

∣∣∣ · C(2/t)d/2N−d/2 + 4δN−d/2

≤ 5δN−d/2.

(2.27)

Since the estimate holds for allj, we get by Hölder’s inequality

lim sup
N→∞

ε̃N,γ,i
K (t) ≤ 5Kδ.

Sinceδ > 0 was arbitrary, (2.19) follows and the proof of Lemma 2.1 is completed. 2



Rescaled Interacting Diffusions 11

3 Proof of Theorem 2

As in the proof of Theorem 1 we may assume without loss of generality that b = 1. The proof here is
analogous to the proof of Theorem 1. First we formulate the martingale problem. Forϕ ∈ C2

0 (Rd)

Mϕ,N
t := XN

t (ϕ) − XN
0 (ϕ) −

∫ t

0

XN
s

(
ANϕ

)
(3.1)

is a continuous square integrable martingale with quadratic variation process

〈Mϕ,N〉t =

∫ t

0

ΓN
s

(
ϕ2

)
ds, (3.2)

where
ΓN

s :=
∑

x∈Zd/
√

NMN

N−1g(NXN
s ({x}))δx.

By Lemma 1.5,ÃNϕ → σ2

2 ∆ϕ and hence again it is enough to show that inL2

〈Mϕ,N 〉t −
∫ t

0

γXN
s

(
ϕ2

)
ds

N→∞−→ 0. (3.3)

Using Theorem 4.1 of [CDP00] it is enough to establish convergence of the means instead or, more pre-
cisely, Lemma 2.1 and 2.2 in this setting. The proof of Lemma 2.1 works here without changes. In the proof
of Lemma 2.2 we only needed the central limit theorem (which is in force here, too) and the fact that the
probability that two random walks do not coalesce isγ

κ . Here we work with two random walksZN,1 and
ZN,2 that run independently according to theq–matrixAN and coalesce at rateκ when they are at the same
site. BypN

t = etAN

we denote the transition probability of any of these random walks. Hence ifZN,1
0 = i

andZN,2
0 = j andi 6= j, then (recall that the walks have rate3σ2(1 − (2MN + 1)−d))

P
i,j [ZN,1 andZN,2 never coalesce] ≥ P

i,j [ZN,1
t 6= ZN,2

t for all t > 0]

= 1 − P
0[ZN,1

t = j − i for somet > 0]

≥ 1 − 3σ2

∫ ∞

0

pN
t (0, j − i) dt.

By the central limit theorem there exists a constantC such that

pN
t (0, j − i) ≤ CM−d

N (t−d/2 ∧ 1), t > 0, N ∈ N.

Thus fori 6= j
lim

N→∞
inf
i6=j

P
i,j [ZN,1 andZN,2 never coalesce] = 1. (3.4)

On the other hand, fori = j, the probability to coalesce before eitherZN,1 or ZN,2 makes a first jump is
κ

6σ2+κ . After the first jump, the probability to coalesce is negligible by (3.4). Thus fort > 0

lim
N→∞

P
i,i[ZN,1 andZN,2 are not coalesced by timetN ] =

6σ2

6σ2 + κ
=

γ

κ
. (3.5)

This yields (2.21) of Lemma 2.2 and hence the statement of Lemma 2.2 holds also in the situation of long
range interactions. Thus the proof of Theorem 2 is completed. 2
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