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INFINITE RATE MUTUALLY CATALYTIC BRANCHING1

BY ACHIM KLENKE AND LEONID MYTNIK

University of Mainz and Technion Haifa

Consider the mutually catalytic branching process with finite branching
rate γ . We show that as γ → ∞, this process converges in finite-dimensional
distributions (in time) to a certain discontinuous process. We give descrip-
tions of this process in terms of its semigroup in terms of the infinitesimal
generator and as the solution of a martingale problem. We also give a strong
construction in terms of a planar Brownian motion from which we infer a
path property of the process.

This is the first paper in a series or three, wherein we also construct an
interacting version of this process and study its long-time behavior.

1. Introduction and main results.

1.1. Motivation. In [5], Dawson and Perkins introduced a population dynamic
model of two populations that live on a countable site space S. The individuals mi-
grate between sites and, at any given site, perform a critical branching process with
a branching rate proportional to the local size of the population of the respective
other type.

More precisely, Dawson and Perkins considered the system of coupled stochas-
tic differential equations (SDEs) (taking nonnegative values)

dYi,t (k) = (AYi,t )(k) dt +
√

γ Y1,t (k)Y2,t (k) dWi,t (k), i = 1,2, k ∈ S.(1.1)

Here, A(k, l) = a(k, l) − 1{k}(l) is the q-matrix of a Markov chain on S with
symmetric jump kernel a, (Wi(k), k ∈ S, i = 1,2) is an independent family of
Brownian motions and γ ≥ 0 is a parameter.

Dawson and Perkins showed that there exists a unique weak solution of this
SDE taking values in a suitable subspace of ([0,∞)2)S with some growth con-
dition. Furthermore, this process is a strong Markov process. While existence of
a weak solution is rather standard due to the procedure proposed by Shiga and
Shimizu [16], weak uniqueness was shown using a certain self-duality of the
process established in [13]. We will describe the duality in detail below, in (2.4).

A main result of Dawson and Perkins is a dichotomy in the long-time behavior
of the solutions depending on whether A is recurrent or transient (assuming some
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mild regularity condition on A). For recurrent A (fulfilling the regularity assump-
tion), the types segregate, while for transient A, there is coexistence of types. More
precisely, let

Mi,t = ∑
k∈S

Yi,t (k)

denote the total mass processes (i = 1,2) and assume that M1,0,M2,0 < ∞.
Then M1 and M2 are continuous orthogonal nonnegative L2-martingales. Let
Mi,∞ = limt→∞ Mi,t denote the almost sure limit. Dawson and Perkins show that
E[M1,∞M2,∞] = 0 if A is recurrent and E[M1,∞M2,∞] = M1,0M2,0 if A is tran-
sient. Furthermore, in the recurrent case, the joint distribution of (M1,∞,M2,∞)

equals Q(M1,0,M2,0), where, for x ∈ [0,∞)2, Qx is the harmonic measure of planar
Brownian motion in [0,∞)2. That is, if B = (B1,B2) is a Brownian motion in R

2

started at x and τ = inf{t > 0 :Bt /∈ (0,∞)2}, then Qx is the probability measure
on

E := [0,∞)2 \ (0,∞)2

given by

Qx = Px[Bτ ∈ ·].(1.2)

The explicit form of the densities of Qx can be found in (2.5).
Via the self-duality of the mutually catalytic branching process, its total mass

behavior for finite initial conditions provides information on the local behavior if
the initial condition is infinite and sufficiently homogeneous. For x ∈ [0,∞)2, let
x denote the state in ([0,∞)2)S with xi(k) = xi for all k ∈ S, i = 1,2. Assume
that Y0 = x. Then

lim
t→∞ Px[Y1,t (0)Y2,t (0) > 0] > 0,

if A is transient, that is, types can coexist locally. On the other hand, for recur-
rent A, the distribution of Yt converges weakly to

∫
δyQx(dy), that is, to a spa-

tially homogeneous point y, where y is sampled according to the distribution Qx .
Hence, in the recurrent case, the two types segregate locally and form clusters. The
assumption that the initial point is constant can be weakened to an ergodic random
initial condition (see [3]).

The starting point for this work was the wish to obtain a quantitative description
of the cluster growth in the recurrent case. We will only briefly describe the heuris-
tics. Dawson and Perkins also constructed a version of their process in continuous
space R instead of S as the solution of a stochastic partial differential equation

dYi,t (r)

dt
= �Yi,t (r) +

√
γ Y1,t (r)Y2,t (r)Ẇi(t, r), r ∈ R, i = 1,2,(1.3)

where Ẇ1 and Ẇ2 are independent space–time white noises and � is the Laplace
operator. As � on R is recurrent, types also segregate here. Now, due to Brownian
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scaling, if we denote by Yγ the solution of (1.3) with that given value of γ , then
we obtain

Px

[(
Y

γ
T

(
r
√

T
))

r∈R
∈ ·] = Px[(Y γT

1 (r))r∈R ∈ ·].(1.4)

Equation (1.4) shows that clusters of Y1,T grow like
√

T and that a better under-
standing of the precise cluster formation can be obtained by letting γ → ∞ for
fixed time. Hence, we aim to construct a model X, that is, in some sense, the limit
of Yγ as γ → ∞.

In this paper, we construct X in the simple case where S is a singleton and where
the migration between colonies is replaced by an interaction with a time-invariant
mean field. This is a first step toward the investigation of the model involving infi-
nitely many sites. We give characterizations of the process X via an infinitesimal
generator, as the solution of a well-posed martingale problem and as the limit of
Yγ as γ → ∞. Finally, we give a strong construction of the process via a time-
changed planar Brownian motion. This will also serve to derive path properties.

In two forthcoming papers, we construct the infinite rate process on a countable
site space S via a stochastic differential equation with jump-type noise and give
a characterization via a martingale problem [9]. Furthermore, we will investigate
the long-time behaviour and give conditions for segregation and for coexistence
of types [10]. An alternative construction via a Trotter product approach is carried
out in [11] and [14].

1.2. Results. We now describe the one-colony process which is the subject of
investigation of this paper. Assume that S is a singleton and that immigration and
emigration come from and go to some colony that is thought to be infinitely big
and whose effective population size (for immigration) is θ ∈ [0,∞)2. Furthermore,
let c ≥ 0 be the rate of migration. Hence, we consider the solution Y = Y γ,c,θ of
the stochastic differential equation

dYi,t = c(θi − Yi,t ) dt +
√

γ Y1,tY2,t dWi,t , i = 1,2.(1.5)

This model can be thought of as a version of the model defined in (1.1) where
the migration between colonies is replaced by an interaction with a time-invariant
mean field θ or with an infinitely large reservoir whose types have proportions
θ1 and θ2. (In fact, in [2] it was shown (Proposition 1.1) that Yγ,c,θ arises as
the McKean–Vlasov limit of solutions of (1.1) with symmetric interaction on a
complete graph S.) More formally, the interaction term AY is replaced by a drift
c(θi − Yi,t ). It is this simplification of the interaction that allows for a tractable
exposition in this article. Note that as t → ∞, the process without drift (c = 0)
converges almost surely to some random x ∈ E. Hence, in the case c = 0, if we
let γ → ∞, then the limiting process would be trivial: if it starts at x ∈ E, then it
stays at x forever. See Section 2 for a more detailed description of the process Y

solving (1.5) (finite γ process).
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On a heuristic level, as the stochastic term in (1.5) defines an isotropic two-
dimensional diffusion, that is, a time-transformed planar Brownian motion, if we
let γ → ∞, then we should end up with a process where the stochastic part is a
planar Brownian motion at infinite speed, stopped when it reaches the boundary
of the upper-right quadrant. That is, the limiting process X should be a Markov
process with values in E. When x is the current state and the drift moves it to
x + c(θ − x)dt , this point should instantaneously be replaced by a random point
chosen according to Qx+c(θ−x)dt . We will, in fact, be able to describe this infini-
tesimal dynamics both in terms of a martingale problem and in terms of a generator
of Markov transition kernels. However, we first define X via an explicit transition
semigroup and show that it is the limit of Yγ,c,θ as γ → ∞. Let

Cl(E) :=
{
f :E → C is cont. and lim

u→∞f (u,0) = lim
v→∞f (0, v) is finite

}
(1.6)

equipped with the supremum norm ‖f ‖∞ = supx∈E|f (x)|.
DEFINITION 1.1. Let c ≥ 0 and θ ∈ [0,∞)2. For t ≥ 0 and x ∈ E, define the

stochastic kernel pt by

pt(x, ·) := p
c,θ
t (x, ·) := Qe−ct x+(1−e−ct )θ .

Define the contraction semigroup S = (St )t≥0 on Cl(E) by

St f (x) =
∫
E

f (y)pt (x, dy).

The Markov process X = Xc,θ with state space E, càdlàg paths and transition ker-
nels (pt )t≥0 is called the infinite rate mutually catalytic branching process (IMUB)
with parameters (c, θ).

In order for this definition to make sense, in Proposition 3.2, we will show that
(St )t≥0 is, in fact, a Markov semigroup.

PROPOSITION 1.2. Xc,θ is a Feller process and has the strong Markov prop-
erty. It is ergodic and the unique invariant measure is Qθ .

PROOF. The map x �→ Qx is continuous, hence x �→ pt(x, ·) is also continu-
ous, that is, Xc,θ is a Feller process. Since Qx = δx for x ∈ E, the semigroup S
is strongly continuous. Hence, by the general theory of Markov processes, there
exists a càdlàg version of X that is strong Markov (see, e.g., [15], Chapters III.7
and 8).

Ergodicity and the explicit form of the invariant measure are trivial. �

THEOREM 1.3 (Xc,θ as an infinite rate process). Assume that Y
γ,c,θ
0 = X

c,θ
0 =

x ∈ E for all γ ≥ 0. As γ → ∞, the finite-dimensional distributions of Yγ,c,θ

converge to those of Xc,θ .
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Note that in Theorem 1.3, trivially, we do not have convergence in the Skorohod
path space, since continuous processes do not converge to discontinuous processes
in that topology.

In addition to the convergence of the finite-dimensional distributions, we also
have convergence of the pth moments for p ∈ [1,2) [but not for p = 2, of course,
since for x ∈ (0,∞)2, the measure Qx does not possess finite second moments, as
can be easily derived from its density formula (2.5)]. Hence, on a suitable proba-
bility space, we have Lp-convergence of Yγ,c,θ to Xc,θ .

THEOREM 1.4 (Lp-convergence). Assume that Y
γ,c,θ
0 = X

c,θ
0 = x ∈ E for all

γ ≥ 0 and let p ∈ [1,2), t ≥ 0.

(i) For every γ ≥ 0 and i = 1,2, we have

Ex[(Y γ,c,θ
i,t )p] ≤ Ex[(Xc,θ

i,t )p] < ∞.

(ii) On a suitable probability space, for i = 1,2, we have

Y
γ,c,θ
i,t

γ→∞−→ X
c,θ
i,t in Lp.

It can be seen from the proofs of Theorems 1.3 and 1.4 that the statements of
these theorems also hold for Y

γ,c,θ
0 = x ∈ [0,∞)2 and t > 0 if we replace X

c,θ
0 by

a random point chosen according to Qx .

REMARK 1.5 (Trotter product approach). While in the one-colony case con-
sidered in this paper, it is easy to explicitly write down the semigroup for the
infinite rate mutually catalytic branching process Xc,θ , it is less obvious how to
construct an interacting version of the process on a countable site space. One pos-
sibility is the Trotter product approach that is used in [11] and [14]. Here, we
briefly sketch it for Xc,θ .

In the classical setting, the Trotter product approach works as follows. In order
to construct a solution Yγ,c,θ of (1.5), in time intervals of length ε, one could alter-
nate between a solution of the pure drift equation (γ = 0) and the pure stochastic
noise equation (c = 0). As ε ↓ 0, this process converges to a solution of (1.5).

If we let γ → ∞, then the noise term results in an instantaneous jump to a point
in E chosen according to Qy , where y is the value of Y at the end of the preceding
“drift interval.” More formally, let (ξ(k, x), k ∈ N, x ∈ [0,∞)2) be an independent
family of E-valued random variables with distribution L[ξ(k, x)] = Qx . For t ∈
[kε, (k + 1)ε), let Xε

t be the solution of the differential equation

dXε
t = c(θ − Xt) dt,

that is,

Xε
t = e−c(t−kε)Xε

kε + (
1 − e−c(t−kε))θ.
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Let

Xε
(k+1)ε− := lim

t↑(k+1)ε
Xε

t = e−cεXε
kε + (1 − e−cε)θ

and define

Xε
(k+1)ε = ξ

(
k + 1,Xε

(k+1)ε−
)
.

One can prove that Xε converges in distribution in the Skorohod topology on the
space of càdlàg paths to Xc,θ (see [11] and [14]).

While, in Definition 1.1, we gave an explicit formula for the transition kernels
of X, it is also interesting to characterize the process X via its infinitesimal dy-
namics. In Section 5, we investigate the generator Ḡ of the semigroup S . For a
certain class C2

l (E) ⊂ Cl(E) of smooth functions f (see Definition 5.1), we give
an explicit formula for Ḡf as an integro-differential operator. Using the classical
Hille–Yoshida theorem, we show that the restricted operator G = Ḡ|C2

l (E) uniquely
defines (St )t≥0 (Theorem 5.3). Furthermore, we show that G restricted to an even
smaller space V of functions that appear in the duality for X still uniquely defines
the process X via a martingale problem (Theorem 5.4). To define G , it is crucial to
study (for suitable functions f ) the limit

lim
t↓0

t−1(
St f (x) − f (x)

) = lim
ε→0

ε−1
(∫

f dQx+εc(θ−x) − f (x)

)
,

which will also clarify the jump structure of the process X. The description of the
exact form of the operator G and the precise statements of the theorems are a bit
technical, so these are deferred to Section 5.

While, for Proposition 1.2, we used general construction principles of Markov
processes, here, we provide an explicit strong construction of the process X in
terms of a given planar Brownian motion B . This construction also allows certain
path properties to be investigated.

Assume B0 = 0. For z ∈ R
2, we write

[z,∞) = [z1,∞) × [z2,∞)

for the rectangular cone northeast of z. For x ∈ [0,∞)2, let

τx := inf{t > 0 :Bt /∈ [−x,∞)}(1.7)

and

Dx := Bτx + x ∈ E.(1.8)

For x, y ∈ R
2, we write y ≤ x if x ∈ [y,∞), that is, if y1 ≤ x1 and y2 ≤ x2. For

x ∈ [0,∞)2, we define the σ -algebra

F D
x = σ(Dy :y ≤ x).(1.9)
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In Lemma 3.1, we will show that D is a Markov process with respect to
(F D

x )x∈[0,∞)2 .
Let θ̄ : [0,∞) → [0,∞)2 and c̄ : [0,∞) → [0,∞) be measurable and locally

integrable. For 0 ≤ s ≤ t , define

C(s, t) = exp
(
−

∫ t

s
c̄(r) dr

)
and 
(s, t) =

∫ t

s

θ̄ (r)

C(0, r)
dr.(1.10)

THEOREM 1.6. Let x ∈ E and define the process Xc̄,θ̄ by

X
c̄,θ̄
t = C(0, t)Dx+
(0,t), t ≥ 0.

Then Xc̄,θ̄ is a time-inhomogeneous Markov process on E with càdlàg paths and
with transition probabilities

ps,t (z, ·) = QC(s,t)z+C(0,t)
(s,t) for 0 ≤ s < t, z ∈ E.(1.11)

In particular, for θ̄ ≡ θ ∈ [0,∞)2 and c̄ ≡ c > 0,

X
c,θ
t = e−ctDx+(ect−1)θ(1.12)

is an infinite rate mutually catalytic branching process with parameter (c, θ), see
Figure 1.

FIG. 1. Strong construction of X1/2,(2,1) with X0 = x = (0,1) via a planar Brownian motion.

Here X
1/2,(2,1)
t = e−t/2((0,1) + bt + (2,1)(et/2 − 1)) for t = 0,1,2,3.
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It is tempting to use this strong construction of Xc̄,θ̄ in order to define an inter-
acting version of the infinite rate mutually catalytic branching process on a count-
able site space S, where cθk(t) at site k ∈ S reflects the migration from neighboring
sites to k. However, in this paper, we do not pursue this topic. Rather, we use the
strong construction in order to derive a path property of Xc,θ via a result of Le Gall
and Meyre [12] on the cone points of planar Brownian motion.

Recall that a measurable set A ⊂ E is called polar for Xc,θ if for all x ∈ E, we
have

Px[Xc,θ
t ∈ A for some t > 0] = 0.

THEOREM 1.7. The point 0 ∈ E is polar for Xc,θ .

1.3. Organization of the paper. In Section 2, we give a detailed description of
the duality for the process with finite branching rate. In Section 3, we establish a
similar duality for the infinite rate process and use it in order to show the conver-
gence in Theorems 1.3 and 1.4. In Section 4, we justify the strong construction of
Theorem 1.6 and also prove Theorem 1.7. Finally, in Section 5, we describe the
infinite rate process in terms of its infinitesimal dynamics and state and prove the
theorem on the construction via the Hille–Yoshida theory (Theorem 5.3) and via a
martingale problem (Theorem 5.4).

2. Duality of the finite γ process. A major tool for the investigation of mu-
tually catalytic branching processes is a self-duality for the process. As it turns
out to be crucial also for the limiting case of infinite branching rate (γ = ∞), we
describe this duality here in more detail. For x = (x1, x2) and y = (y1, y2) ∈ R

2,
we introduce the lozenge product

x � y := −(x1 + x2)(y1 + y2) + i(x1 − x2)(y1 − y2)(2.1)

(with i = √−1) and define

F(x, y) = exp(x � y).(2.2)

Note that x � y = y � x. Furthermore, define the “scalar product”

〈x, y〉 = x1y1 + x2y2 for x, y ∈ [0,∞)2.(2.3)

For x = (x(k))k∈S and y = (y(k))k∈S , we write

H(x,y) = exp
(∑

k∈S

x(k) � y(k)

)
.

If Y is the process defined in (1.1) started in state y and Ỹ is the process started
in some suitable ỹ (such that all sums are finite), then the duality reads (see [13],
equation (2.5))

Ey[H(Yt , ỹ)] = Eỹ[H(y, Ỹt )].(2.4)
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In fact, this duality also holds for asymmetric A if Ỹ is a solution of (1.1) with
A replaced by its transpose A∗. As this mixed Laplace and Fourier transform H

is measure determining ([13], Lemma 2.5), the duality yields uniqueness of the
solutions of (1.1). Furthermore, it provides a tool for translating local properties
of the solutions into global properties and vice versa. If x = (u, v) ∈ (0,∞)2, then
the harmonic measure Qx [recall (1.2)] has a one-dimensional Lebesgue density
on

E := ([0,∞) × {0}) ∪ ({0} × [0,∞)
)

that can be computed explicitly

Q(u,v)(d(ū, v̄)) =

⎧⎪⎪⎨
⎪⎪⎩

4

π

uvū

4u2v2 + (ū2 + v2 − u2)2 dū, if v̄ = 0,

4

π

uvv̄

4u2v2 + (v̄2 + u2 − v2)2 dv̄, if ū = 0.
(2.5)

Furthermore, trivially we have

Qx = δx if x ∈ E.(2.6)

We now turn to the situation of only one colony. We consider the solution Z =
(Z1,Z2) of

dZi,t =
√

γZ1,tZ2,t dWi,t , i = 1,2, Z0 = z ∈ [0,∞)2.(2.7)

By Theorem 1 of [4], there is the unique strong solution to the above equation.
Clearly, Z1 and Z2 are orthogonal L2-martingales and hence they converge al-

most surely to some random variable Z∞ = (Z1,∞,Z2,∞). As Z is an isotropic
diffusion on [0,∞)2, it is a time-transformed Brownian motion. Thus Z∞ has the
same distribution as a planar Brownian motion B started at z and stopped (at time
τ ) upon leaving (0,∞)2, that is [see (2.5)],

Lz[Z∞] = Lz[Bτ ] = Qz.

(We denote by Lx[Xt ] = Px[Xt ∈ ·] = P[Xt ∈ · | X0 = x] the distribution of the
process X at time t when started at x.) It is easy to see that, in fact,

τZ := inf{t > 0 :Zt ∈ E} < ∞ almost surely,

and that

Zt = ZτZ for all t > τZ.

Clearly, increasing γ amounts to speeding up the process. Hence, in the limit,
we would have a process that instantaneously jumps from z to a random point
(picked according to Qz) and then stays there. In order to obtain a more interest-
ing limiting process, and with a view toward interacting colonies, we introduce a
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drift term and consider the equation (which was analyzed in more detail in [2],
Propositions 1.1 and 1.2)

dYi,t = c(θi − Yi,t ) dt +
√

γ Y1,tY2,t dWi,t , i = 1,2.(2.8)

Here, c ≥ 0 and θ ∈ [0,∞)2 are parameters of the process. It is standard to show
that (2.8) has a weak solution. Weak uniqueness can be obtained via duality. We
first outline the general picture for the duality that comes from the interacting
colonies case and then give an explicit computation for our special situation.

Let us consider a two-colonies model with site space S = {1,2}, where Y is the
size of the population at site 1 and the size of the population at site 2 is constant
and equals θ . This amounts to a migration matrix

A =
(−c c

0 0

)
(2.9)

and to branching rates γ (1) = γ (at site 1) and γ (2) = 0 (at site 2). Note that
the approach of Dawson and Perkins does not require that the branching rate be
constant; neither does it require that the migration matrix be symmetric or a q-
matrix. (At least if S is finite—otherwise, certain regularity conditions have to
be imposed.) Dawson and Perkins use a duality with respect to a process Ỹ with
migration matrix A∗ (the transpose of A) and with the same branching rates as Y

to show weak uniqueness of Y .
Let us now construct the dual process explicitly. We will later use this approach

in order to construct a dual for the γ = ∞ limiting process. Let ỹ = (ỹ(1), ỹ(2)) ∈
([0,∞)2)2 and let Z be the unique strong (by Theorem 1 of [4]) [0,∞)2-valued
solution of

dZi,t =
√

γZ1,tZ2,t dWi,t , i = 1,2, Z0 = ỹ(1).(2.10)

Define a process Ỹ on ([0,∞)2)2 by

Ỹt (1) = e−ctZt and Ỹt (2) = ỹ(2) +
∫ t

0
ce−crZr dr.(2.11)

Note that this Ỹ is a solution of (1.1) with S = {1,2}, with site-dependent
branching rate γ (1) = γ , γ (2) = 0 and with A from (2.9) replaced by A∗.
In particular, Ỹ is a time-homogeneous Markov process. We also get the time-
homogeneous Markov property via an explicit computation:

Ỹt+s =
(
e−c(t+s)Zt+s, ỹ(2) +

∫ t+s

0
ce−crZr dr

)

=
(
e−cs(e−ctZt+s), ỹ(2) +

∫ t

0
ce−crZr dr +

∫ s

0
ce−cr (e−ctZt+r ) dr

)

=
(
e−csZ′

s, ỹ
′(2) +

∫ s

0
ce−crZ′

r dr

)
,
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where Z′
r = e−ctZt+r and ỹ′(2) = Ỹt (2) = ỹ(2) + ∫ t

0 ce−crZr dr . Clearly, Z′ has
the distribution of a solution of (2.7) with ỹ′(1) := Z′

0 = Ỹt (1).
For x, x′, y, y′ ∈ [0,∞)2, recall that

H((x, x′), (y, y′)) = F(x, y)F (x′, y′).(2.12)

PROPOSITION 2.1 (Duality). Let Y and Ỹ be defined by (2.8) and (2.11), re-
spectively. Then, for all y ∈ [0,∞)2, ỹ ∈ ([0,∞)2)2 and t ≥ 0, we have

Ey[H((Yt , θ), ỹ)] = Eỹ[H((y, θ), Ỹt )].(2.13)

In particular, if Z is a solution of (2.10) with Z0 = z ∈ [0,∞)2, then

Ey[F(Yt , z)] = Ez

[
F(y, e−ctZt )F

(
θ,

∫ t

0
ce−crZr dr

)]
.(2.14)

A similar duality was derived in [2], Lemma 4.2. Before we prove the proposi-
tion, we have to collect some properties of the derivatives of F . We omit the proof
of the following lemma.

LEMMA 2.2 (Derivatives of the duality function). Denote the partial deriva-
tives of F by

∇1F(x, y) := d

dx
F(x, y), ∇2F(x, y) := d

dy
F(x, y)

and define the Laplace operators �1 and �2 by

�1F(x, y) :=
[

∂2

∂x2
1

+ ∂2

∂x2
2

]
F(x, y), �2F(x, y) :=

[
∂2

∂y2
1

+ ∂2

∂y2
2

]
F(x, y).

Then, for all x, y, z ∈ [0,∞)2, we have [recall (2.1) and (2.3)]

〈z,∇1F(x, y)〉 = (z � y)F (x, y),

〈z,∇2F(x, y)〉 = (z � x)F (x, y),

�1F(x, y) = 8y1y2F(x, y),

�2F(x, y) = 8x1x2F(x, y).

PROOF OF PROPOSITION 2.1. We use Itô’s formula and Lemma 2.2 to com-
pute the derivatives of both sides of (2.13) at t = 0:

d

dt
Ey[H((Yt , θ), ỹ)]|t=0

= 〈c(θ − y),∇1F(y, ỹ(1))〉F(θ, ỹ(2))
(2.15)

+ 1

2
γy1y2�1F(y, ỹ(1))F (θ, ỹ(2))

= H((y, θ), ỹ)[c(θ − y) � ỹ(1) + 4γy1y2ỹ1(1)ỹ2(1)]
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and

d

dt
Eỹ[H((y, θ), Ỹt )]|t=0

= F(θ, ỹ(2))

(
〈−cỹ(1),∇2F(y, ỹ(1))〉

+ γ

2
ỹ1(1)ỹ2(1)�2F(y, ỹ(1))

)
(2.16)

+ F(y, ỹ(1))〈cỹ(1),∇2F(θ, ỹ(2))〉
= H((y, θ), ỹ)[c(θ − y) � ỹ(1) + 4γy1y2ỹ1(1)ỹ2(1)].

Since the two derivatives coincide, (2.13) holds (see Corollary 4.4.13 of [6] with
α = β = 0). Equation (2.14) is a direct consequence of (2.13). �

COROLLARY 2.3. Recall Z defined by (2.10).

(i) Taking c = 0, Proposition 2.1 implies that Z is self-dual:

Ex[F(Zt , y)] = Ey[F(x,Zt)] for all x, y ∈ [0,∞)2, t ≥ 0.

(ii) Letting t → ∞ in (i) and recalling that Lx[Zt ] t→∞−→ Qx , we get, by domi-
nated convergence, the duality relation for the harmonic measure:∫

E
F(z, y)Qx(dz) =

∫
E

F(x, z)Qy(dz) for all x, y ∈ [0,∞)2.

(iii) In particular (since Qx = δx for x ∈ E and due to the symmetry of F ), for
all x ∈ E and y ∈ [0,∞)2, we have∫

E
F(x, z)Qy(dz) = F(x, y) = F(y, x) =

∫
E

F(z, x)Qy(dz).

COROLLARY 2.4. (i) The family of functions

F0 = {[0,∞)2 → C :x �→ F(x, y), y ∈ [0,∞)2}
is measure determining for [0,∞)2.

(ii) The vector space

V :=
{

n∑
m=1

λmF(·, zm) :n ∈ N, λ1, . . . , λn ∈ C, z1, . . . , zn ∈ E

}
(2.17)

spanned by F := {E → C :x �→ F(x, z), z ∈ E} is dense in Cl(E). In particular,
F is measure determining for E.
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PROOF. Let D0 be the algebra generated by F0. Clearly, F0 separates points
of [0,∞)2, contains 1 = F(·,0) and is closed under multiplication and under
complex conjugation since F(x, (y1, y2)) = F(x, (y2, y1)). Hence, by the Stone–
Weierstrass theorem, D0 is dense in the space Cl([0,∞)2) of functions [0,∞)2 →
C that are continuous and have a limit at infinity. As F0 is closed under multipli-
cation, D0 is the vector space spanned by F0 and thus F0 is measure determining
on [0,∞)2.

Let FE = {f |E :f ∈ F0} ⊃ F and let DE = {f |E :f ∈ D0} denote the al-
gebra generated by FE . By the above argument, DE ⊂ Cl(E) is dense. Now,
by Corollary 2.3(iii), an element F(·, y) ∈ FE can be written as the integral
F(x, y) = ∫

F(x, z)Qy(dz), where the integrand functions are in F . The integral
can be approximated (uniformly in x) by finite sums, that is, by elements of V .
Hence, V is dense in DE and thus also in Cl(E). �

Apparently, Y is ergodic and has a unique invariant distribution with a Lebesgue
density on (0,∞)2. Unlike for the analogous one-dimensional equation

dUt = c(b − Ut) dt + √
γUt dWt,

where the invariant distribution is known to be the Gamma distribution �2c/γ,2cb/γ ,
here, the explicit form of the density is unknown. It is known (see, e.g., [7], Ex-
ample IV.8.2, page 237) that U hits 0 if and only if 2cb/γ < 1. Hence, we may
expect that Y = Yγ,c,θ hits E only at ((2cθ2/γ,∞) × {0}) ∪ ({0} × (2cθ1/γ,∞)).
Compare this with the fact that 0 ∈ E is not hit by the infinite γ process Xc,θ (see
Theorem 1.7).

3. Convergence as γ → ∞: Proofs of Theorems 1.3, 1.4.

3.1. Construction of the process. Recall the definitions of pt , S and Xc,θ in
Definition 1.1. In order for the definition to make sense, we still have to show, in
Proposition 3.2 below, that pt is indeed a Markov kernel and that the Chapman–
Kolmogorov equation holds. We prepare for Proposition 3.2 with a lemma.

Recall the definitions of C, 
, D and F D in (1.8), (1.9) and (1.10).

LEMMA 3.1. (i) D has the Markov property, that is, for x, y ∈ [0,∞)2 and
A ⊂ E measurable, we have

P[Dx+y ∈ A | F D
x ] = Qy+Dx (A).

(ii) For f :E → C bounded and measurable and r ≥ 0, we have∫
E

f (rz)Qx(dz) =
∫
E

f dQrx.

(iii) Furthermore, ∫
E

Qx(dz)Qrz+y = Qrx+y.
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PROOF. (i) Let F B denote the filtration generated by the Brownian motion
B and let F B

τx
denote the σ -algebra of the τx past of B [recall (1.7)]. Note that

F B
τx

⊃ F D
x .

For x′ ∈ [0,∞)2, denote by P−x′ the law of B when started at B0 = −x′. Hence,
by spatial homogeneity, for x′ ≤ x, we have

P−x′ [Bτx+y + (x + y) ∈ A] = Qy+(x−x′)(A).

Choosing x′ = −Bτx , we infer that

PBτx
[Bτx+y + (x + y) ∈ A] = Qy+Dx (A).

We now apply the strong Markov property of B to obtain

P[Dx+y ∈ A | F D
x ] = E

[
P0[Bτx+y + (x + y) ∈ A | F B

τx
] | F D

x

]
= E

[
PBτx

[Bτx+y + (x + y) ∈ A] | F D
x

]
= E[Qy+Dx (A) | F D

x ] = Qy+Dx (A).

(ii) This follows from the spatial homogeneity of B .
(iii) Recall that Drx has distribution Qrx . Hence, by (ii) and (i), we get∫

E
Qx(dz)Qrz+y(A) =

∫
E

Qrx(dz)Qz+y(A)

= E[Qy+Drx (A)] = P[Drx+y ∈ A]
= Qrx+y(A). �

PROPOSITION 3.2. (St )t≥0 defined in Definition 1.1 is a Markov semigroup.

PROOF. Recall that x �→ Qx is a continuous map. Hence, for open sets A ⊂ E,
the map x �→ Qx(A) is lower semicontinuous, by the portmanteau theorem (see,
e.g., [8], Theorem 13.16), and is hence measurable. Hence, x �→ Qx(A) is mea-
surable for all Borel sets A ⊂ E. It remains to check the Chapman–Kolmogorov
equation for (pt ). By Lemma 3.1(iii), we infer that∫

E
pt(x, dy)ps(y, ·) =

∫
E

Qe−ct x+(1−e−ct )θ (dy)Qe−csy+(1−e−cs )θ

= Qe−c(t+s)x+e−cs (1−e−ct )θ+(1−e−cs )θ

= Qe−c(t+s)x+(1−e−c(t+s))θ

= pt+s(x, ·). �
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3.2. Duality and proof of finite-dimensional distributions convergence (Theo-
rem 1.3). In this section, we prove the convergence of the finite-dimensional dis-
tributions of Yγ,c,θ to those of X = Xc,θ by means of a duality relation. For Yγ,c,θ ,
we have already established the duality, in Proposition 2.1. We now come to the
duality for X. Recall the definition of Ỹ from (2.11). We will need as initial values
only ỹ ∈ E ×[0,∞)2. Note that, in this case, the process Z is constant in time and
the process Ỹ is given by the deterministic equation

Ỹt = (
e−ct ỹ(1), (1 − e−ct )ỹ(1) + ỹ(2)

)
.(3.1)

Hence, Ỹ can be understood as a deterministic Markov process with state space
E × [0,∞)2. Recall H from (2.12) and F from (2.2).

PROPOSITION 3.3. X and Ỹ are dual in the sense that for all initial conditions
X0 = x ∈ E, Ỹ0 = ỹ ∈ E × [0,∞)2 and for all t ≥ 0, we have

Ex[H((Xt , θ), ỹ)] = Eỹ[H((x, θ), Ỹt )].(3.2)

In particular, we get

Ex[F(Xt, z)] = F(x, e−ct z)F
(
θ, (1 − e−ct )z

)
for x ∈ [0,∞)2, z ∈ E,(3.3)

and the distribution of Xt is determined by (3.3).

PROOF. As Ỹ is deterministic, (3.2) and (3.3) are equivalent and so we only
need to show (3.3). Since z ∈ E, by Corollary 2.3(iii), the left-hand side of (3.3)
equals ∫

E
F(y, z)Qe−ct x+(1−e−ct )θ (dy) = F

(
e−ctx + (1 − e−ct )θ, z

)
= F(x, e−ct z)F

(
θ, (1 − e−ct )z

)
.

By Corollary 2.4, equation (3.3) determines the distribution of Xt . �

We are now ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3. As both Xc,θ and Yγ,c,θ are Markov processes, it is
easy to see that for convergence of finite-dimensional distributions, it is enough to
show that for any t ≥ 0, x ∈ E and (xγ )γ≥0 in [0,∞)2 such that limγ→∞ xγ → x,
we have

Lxγ [Yγ,c,θ
t ] γ→∞−→ Lx[Xc,θ

t ] weakly.(3.4)

As shown in the proof of Corollary 2.4(i), D0 is dense in Cl([0,∞)2). Hence, it
is enough to consider F(·, z), z ∈ [0,∞)2, as test functions. Denote by Zγ the
process defined in (2.10) started at Z

γ
0 = z. For γ = 1, we drop the superscript,

that is, Z := Z1. Denote by Z∞ the almost sure limit of Zt as t → ∞ and recall
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that its distribution is Qz. Note that, due to Brownian scaling, (Zγ
t )t≥0

D= (Zγ t )t≥0.
Hence, by Proposition 2.1, we have

Exγ [F(Y
γ,c,θ
t , z)] = Ez

[
F(xγ , e−ctZγ t )F

(
θ,

∫ t

0
ce−crZγ r dr

)]
γ→∞−→ Ez

[
F(x, e−ctZ∞)F

(
θ, (1 − e−ct )Z∞

)]
=

∫
E

F(x, e−cty)F
(
θ, (1 − e−ct )y

)
Qz(dy)

=
∫
E

Ex[F(Xt, y)]Qz(dy)

= Ex

[∫
E

F(Xt , y)Qz(dy)

]

= Ex[F(Xt, z)],
where the fourth line follows by (3.3) and the last equality follows by Corol-
lary 2.3(iii). �

REMARK 3.4. We could also define Xc,θ in Definition 1.1 for initial values
x ∈ [0,∞)2 (instead of E only). This means that Xc,θ starts life with a jump from x

to a random point on E chosen according to Qx and then continues with the usual
dynamics. Clearly, this process does not have a càdlàg version (due to the jump at
time 0) and its transition semigroup is not strongly continuous at 0. Nevertheless,
the proof of Theorem 1.3 shows that that theorem also holds for this process and
hence for Y

γ,c,θ
0 = X

c,θ
0 = x ∈ [0,∞)2.

3.3. Proof of the Lp-convergence (Theorem 1.4). We prepare for the proof of
Theorem 1.4 with two lemmas.

LEMMA 3.5. Let B = (B1,B2) be a planar Brownian motion started at
(B1,0,B2,0) = (u, v) ∈ [0,∞)2 and let

τ = inf{t > 0 :Bt /∈ (0,∞)2}.
Then, for any p ∈ [1,2), we have

E[τp/2] ≤ 2

2 − p

(
2

π

)p/2

(uv)p/2 < ∞.

More generally, one could show for the exit time of a cone with angle 2α (here,
α = π/4) that E[τp/2] < ∞ if and only if pα < π/2 (see [1], equation (3.8)). We
give the short proof here in order to be self-contained.
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PROOF. By the reflection principle and independence of B1 and B2, we get

P[τ > t] = 4N0,t (0, u)N0,t (0, v),

where N0,t (a, b) = (2πt)−1/2 ∫ b
a e−r2/2t dr is the centred normal distribution with

variance t . Hence,

E[τp/2] =
∫ ∞

0
P[τ > t2/p]dt

≤
∫ ∞

0
1 ∧

(
2

π
uvt−2/p

)
dt = 2

2 − p

(
2

π

)p/2

(uv)p/2. �

LEMMA 3.6. For every (u, v) ∈ [0,∞)2, every p ∈ [1,2) and every i = 1,2,
we have ∫

E
x

p
i Q(u,v)(dx) ≤ |u2 − v2|p/2 + 2p/2(uv)p/2

cos(pπ/4)
< ∞.

PROOF. This can be verified by means of an explicit computation using the
density formula of Q(u,v) in (2.5). �

Note that finiteness of the expression on the left-hand side in Lemma 3.6 (which
is what we need in the proof of Theorem 1.4) could also be inferred without com-
putations by the Burkholder–Davis–Gundy inequality and Lemma 3.5.

PROOF OF THEOREM 1.4. (i) By Lemma 3.6, we have

E[(Xc,θ
i,t )p] =

∫
E

y
p
i Qe−ct x+(1−e−ct )θ (dy) < ∞.

Fix t > 0 and define

Mt
i,s := e−ctxi + (1 − e−ct )θi +

∫ s

0
ec(r−t)

√
γ Y

γ,c,θ
1,r Y

γ,c,θ
2,r dWi,r .

Let 〈Mt
1〉 = 〈Mt

2〉 denote the square variation process of both Mt
1 and Mt

2. Note

that Mt
i,t = Y

γ,c,θ
i,t ≥ 0 and that Mt

i is a martingale and thus

Mt
i,s = E[Mt

i,t | Mt
i,s] ≥ 0 for all s ∈ [0, t].(3.5)

Now, (Mt
s )s≥0 is an isotropic diffusion in R

2 and is hence a time-transformed
planar Brownian motion. That is, there exists a planar Brownian motion B (with
respect to some right-continuous complete filtration F ) started at B0 = e−ctx +
(1 − e−ct )θ such that each 〈Mt

1,·〉s is an F stopping time and such that B〈Mt
1,·〉s =

Mt
s for all s ≥ 0.
Define the F stopping times

τ := inf{s > 0 :Bs /∈ (0,∞)2} and τ0 := inf{s > 0 :Bs /∈ [0,∞)2}.
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Clearly, we have τ = τ0 almost surely and, hence, by (3.5),

〈Mt
1,·〉t ≤ τ0 = τ a.s.

Using the Burkholder–Davis–Gundy inequality for the martingale (Bi,s)s≥0 yields
(see Lemma 3.5)

E
[
sup
s≤τ

B
p
i,s

]
≤ 2p−1(

B
p
i,0 + (4p)pE[τp/2]) < ∞.

Hence, (|Bi,τ∧s |p)s≥0 is uniformly integrable and we can apply the optional sam-
pling theorem to obtain

E[(Y γ,c,θ
i,t )p] = E

[(
Bi,〈Mt

1,·〉t
)p] ≤ E[(Bi,τ )

p] = E[(Xc,θ
i,t )p].

(ii) By Theorem 1.3 and the Skorohod embedding theorem, we may construct
all processes on one probability space such that Y

γ,c,θ
t → X

c,θ
t almost surely as

γ → ∞. By part (i), the pth moments of Y
γ,c,θ
i,t , γ ≥ 0, are uniformly integrable

and so we have the desired Lp-convergence. �

4. The strong construction (proofs of Theorems 1.6 and 1.7). Recall the
definitions of C, 
 and D in (1.8) and (1.10).

LEMMA 4.1. The map x �→ Dx is càdlàg.

PROOF. This follows from continuity of B and the definition of τx . �

PROOF OF THEOREM 1.6. From Lemmas 3.1 and 4.1, we infer that Xc̄,θ̄ has
the Markov property and càdlàg paths. It remains to show (1.11).

By Lemma 3.1, for x, z ∈ E, A ⊂ E measurable and 0 ≤ s < t , we have (with

Px denoting the probability law of X
c̄,θ̄
t , as defined in Theorem 1.6)

ps,t (z,A) = Px[Xc̄,θ̄
t ∈ A | Xc̄,θ̄

s = z]
= P

[
C(0, t)Dx+
(0,t) ∈ A | Dx+
(0,s) = C(0, s)−1z

]
= QC(0,s)−1z+
(s,t)(C(0, t)−1A)

= QC(s,t)z+C(0,t)
(s,t)(A). �

PROOF OF THEOREM 1.7. If cθ = 0, then Xc,θ is the deterministic process
X

c,θ
t = e−ctX

c,θ
0 and hence 0 is polar.

Now, assume that cθ �= 0. Le Gall and Meyre [12] show that almost surely, for
all z ∈ (0,∞)2, the planar Brownian motion B does not leave the cone [−z,∞)

first at −z. More formally, consider the event

A := {Bτz �= −z for all z ∈ (0,∞)2}.
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Theorem 1 of [12] then implies that P[A] = 1 (in fact, they show that no rectangu-
lar cone is first left at its vertex, not only northeast cones [z,∞)). Now, by (1.12),
we have

{Xc,θ
t �= 0 for all t > 0} = {Dx+rθ �= 0 for all r > 0}

= {Bτx+rθ �= x + rθ for all r > 0} ⊃ A.

This shows the claim of Theorem 1.7. �

5. The infinitesimal dynamics of Xc,θ . In this section, we give a descrip-
tion and construction of the infinite rate mutually catalytic branching process X

in terms of its infinitesimal characteristics. To this end, we will define a linear
operator Gc,θ that:

(i) defines the contraction semigroup of X in the sense of the Hille–Yoshida
theorem (Theorem 5.3);

(ii) defines a well-posed martingale problem whose unique solution is X (The-
orem 5.4).

5.1. Results. Recall, from Definition 1.1, that the linear operator St on Cl(E)

is defined by

St f (x) :=
∫
E

f (y)pt (x, dy) =
∫
E

f (y)Qe−ct x+(1−e−ct )θ (x, dy).

In order to define the generator of S = (St )t≥0, we will need to study (for suitable
functions f ) the limit

lim
t↓0

t−1(
St f (x) − f (x)

) = lim
ε→0

ε−1
(∫

f dQx+εc(θ−x) − f (x)

)
.(5.1)

In the sequel, we will use the shorthand notation

∂1f (u, v) := ∂

∂u
f (u, v) and ∂2f (u, v) := ∂

∂v
f (u, v).

In order to define what we mean by a suitable function, we introduce the subspace
C2

l (E) ⊂ Cl(E).

DEFINITION 5.1. Let C2
l (E) ⊂ Cl(E) be the subspace of such functions f ∈

Cl(E):

(i) whose partial derivatives ∂1f and ∂2f exist on (0,∞) × {0} and {0} ×
(0,∞), respectively, are continuous, can be continuously extended to {0}× [0,∞)

and fulfill

lim
u→∞u∂1f (u,0) = lim

v→∞v ∂2f (0, v) = 0;(5.2)
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(ii) whose partial second derivatives ∂2
1f and ∂2

2f exist on (0,∞) × {0} and
{0} × (0,∞), respectively, and are such that

‖f ‖2,∞ := sup
r∈(0,∞)

r
(|∂2

1f (r,0)| + |∂2
2f (0, r)|) < ∞.(5.3)

Note that, for f ∈ C2
l (E), we have

‖f ‖1,∞ := sup
r∈[0,∞)

(|∂1f (r,0)| + |∂2f (0, r)|) < ∞.(5.4)

In order to get an explicit formula for the limit in (5.1), we define the vague
limits (for u, v > 0)

ν(0,v) := v-lim
ε↓0

ε−1Q(ε,v) and ν(u,0) := v-lim
ε↓0

ε−1Q(u,ε).

ν(u,0) can be thought of as the “Lévy measure” of the next jump when the actual
position is (u,0) and the drift is in direction of (0,1). In order to formalize this, for
the drift in direction (0,1), we define the linear operator G2 on C2

l (E) by G2f (x) =
∂2f (x) if x1 = 0 and

G2f (x) =
∫
E
[f (y) − f (x) − (y1 − x1) ∂1f (x)]νx(dy) if x1 > 0.

For the drift in direction (1,0), we define G1 similarly. Note that νx is not a finite
measure and that the integral of y1 −u with respect to ν(u,0) is well defined only as
a Cauchy principal value and, as such, equals zero. Hence, this term in the integral
is needed in order for the integral to be well defined in the usual sense. In Lem-
ma 5.5 below, we will show that G1f and G2f are, in fact, well defined and are in
Cl(E).

Due to spatial homogeneity of planar Brownian motion, we have a scaling rela-
tion that helps to get rid of the many different νx in the definition of G1 and G2:∫

E
f (x)ν(u,0)(dx) = 1

u

∫
E

f (ux)ν(1,0)(dx).

Furthermore, letting f †((x1, x2)) := f ((x2, x1)), by symmetry, we have∫
E

f (x)ν(0,v)(dx) =
∫
E

f †(x)ν(v,0)(dx) = 1

v

∫
E

f †(vx)ν(1,0)(dx).

Hence, we can express G1 and G2 in terms of

ν := ν(1,0).(5.5)

Using the explicit form of the density of Q(1,ε) in (2.5) and letting ε → 0, we get
that the σ -finite measure ν on E has a one-dimensional Lebesgue density given by

ν(d(u, v)) =

⎧⎪⎪⎨
⎪⎪⎩

4

π

u

(1 − u)2(1 + u)2 du, if v = 0,

4

π

v

(1 + v2)2 dv, if u = 0.
(5.6)
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G1 and G2 can now be written as

G2f (x) =

⎧⎪⎪⎨
⎪⎪⎩

∂2f (x), if x1 = 0,
1

x1

∫
E
[f (x1y) − f (x)

− x1(y1 − 1) ∂1f (x)]ν(dy), if x1 > 0,

(5.7)

and

G1f = (G2f
†)†.(5.8)

Finally, we define the operator Gc,θ on C2
l (E) with domain D(Gc,θ ) = C2

l (E) that
determines the infinitesimal characteristics of the process X = Xc,θ :

Gc,θf (x) =
2∑

i=1

c(θi − xi)Gif (x).(5.9)

LEMMA 5.2. The operator Gc,θ is well defined. That is, for f ∈ C2
l (E), the

expressions in (5.9) and (5.7) are well defined and we have Gc,θf ∈ Cl(E).

This lemma will be proven in Section 5.2.

THEOREM 5.3 (Xc,θ via its generator). (i) For every f ∈ C2
l (E), we have,

pointwise, for all x ∈ E, that

Gc,θf (x) = lim
ε↓0

ε−1
(∫

E
f dQx+εc(θ−x) − f (x)

)
= lim

t↓0

St f (x) − f (x)

t
.(5.10)

(ii) The operator Gc,θ on Cl(E) is closable and its closure generates the con-
traction semigroup S of the process Xc,θ .

The theorem will be proven in Section 5.2 using the classical Hille–Yoshida
theorem.

A different, and more modern, approach to constructing Markov processes from
their infinitesimal dynamics is the martingale problem technique due to Stroock
and Varadhan.

Recall from (2.17) that V ⊂ C2
l (E) is the vector space spanned by {F(·, z),

z ∈ E}. Define the linear operator Gc,θ on V by (5.9) and (5.7). By Theorem 5.3(i),
we obtain for z ∈ E [using Corollary 2.3(iii) in the second line and Lemma 2.2 in
the last line] that

Gc,θF (·, z)(x) = lim
ε↓0

ε−1
(∫

E
F(y, z) dQx+εc(θ−x)(dy) − F(x, z)

)

= lim
ε↓0

ε−1(
F

(
x + εc(θ − x), z

) − F(x, z)
)

(5.11)
= 〈c(θ − x),∇1F(x, z)〉
= F(x, y)[c(θ − x) � z].
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Hence, (5.11) is enough to define Gc,θ on V and we do not really need the
measure ν from (5.7) here.

A solution of the (Gc,θ , V ) martingale problem is an E-valued measurable sto-
chastic process X such that

Mt := F(Xt , z) −
∫ t

0

(
c(θ − Xs) � z

)
F(Xs, z) ds

is a (C-valued) martingale. A martingale problem is said to be well posed if, for
every probability measure μ on E, there exists a solution X with L[X0] = μ

(existence) and any two solutions have the same finite-dimensional distributions
(uniqueness). In this case, X is a Markov process (see [6], Theorem 4.4.2(a)).

THEOREM 5.4 (Martingale problem characterization of Xc,θ ). The martin-
gale problem (Gc,θ , V ) is well posed and its unique solution is Xc,θ .

This theorem will be proven in Section 5.3.

5.2. The Hille–Yoshida approach (proof of Theorem 5.3). Lemma 5.2 and
part (i) of Theorem 5.3 are direct consequences of the following two lemmas.

Let e1 = (1,0) and e2 = (0,1).

LEMMA 5.5. For f ∈ C2
l (E), x ∈ E and i = 1,2, the expression Gif (x) from

(5.7) and (5.8) is well defined and we have

lim
ε↓0

ε−1
(∫

E
f dQx+εei

− f (x)

)
= Gif (x).(5.12)

LEMMA 5.6. For f ∈ C2
l (E), we have Gc,θf ∈ Cl(E).

PROOF OF LEMMA 5.5. For x = (0,0), since Qεei
= δεei

, this is the very
definition of Gi . For u �= (0,0), by linear scaling and symmetry, it is enough to
consider the case x = (1,0). If i = 1, then the left-hand side of (5.12) equals

lim
ε↓0

ε−1(
f (1 + ε,0) − f (1,0)

) = ∂1f (1,0) = (G1f )(1,0).

Now, consider i = 2. It is a simple exercise to compute that for every ε > 0,

4

π

∫ ∞
0

r(r − 1)

4ε2 + (r2 + ε2 − 1)2 dr = 2

π
ε−1 arctan(ε)

= 4

π

∫ ∞
0

s

4ε2 + (s2 − ε2 + 1)2 ds.

Hence, if we let g(y) := (y1 − 1) ∂1f (1,0), then, for every ε > 0,∫
E

(
g(y) − g(1,0)

)
Q(1,ε)(dy) = 0.
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Hence, we can replace f by f −g. Now, f −g is twice differentiable, has at most
linear growth and ∂1(f − g)(1,0) = 0. Hence,

sup
u≥0,u�=1

|(f − g)(u,0) − f (1,0)|
(u − 1)2 < ∞.

This allows us to use dominated convergence in the following computation to ob-
tain

lim
ε↓0

ε−1
(∫

E
f dQ(1,0)+εe2 − f (1,0)

)

= lim
ε↓0

ε−1
∫

[f (x) − f (1,0) − (x1 − 1) ∂1f (1,0)]Q(1,ε)(dx)

= lim
ε↓0

(
4

π

∫ ∞
0

u[(f − g)(u,0) − f (1,0)]
4ε2 + (u2 + ε2 − 1)2 du

+ 4

π

∫ ∞
0

v[(f − g)(0, v) − f (1,0)]
4ε2 + (v2 − ε2 + 1)2 dv

)

= lim
ε↓0

(
4

π

∫ ∞
0

u[(f − g)(u,0) − f (1,0)]
4ε2 + ε4 + 2ε2(u + 1)(u − 1) + (u + 1)2(u − 1)2 du

+ 4

π

∫ ∞
0

v[(f − g)(0, v) − f (1,0)]
4ε2 + (v2 − ε2 + 1)2 dv

)

= 4

π

∫ ∞
0

u[(f − g)(u,0) − f (1,0)]
(u2 − 1)2 du

+ 4

π

∫ ∞
0

v[(f − g)(0, v) − f (1,0)]
(v2 + 1)2 dv

=
∫
E
[f (y) − f (1,0) − (y1 − 1) ∂1f (1,0)]ν(dy)

= G2f (1,0). �

PROOF OF LEMMA 5.6. We have to show that for any f ∈ C2
l (E), Gc,θf (x)

is continuous in x ∈ E and has a limit at ∞. By (5.9), it is enough to derive these
properties for Gi(x) := (θi − xi)Gif (x), i = 1,2. We will give the proof only for
the case i = 2 since the case i = 1 is analogous.

For x1 = 0, we have

G2(x) = G2(0, x2) = (θ2 − x2) ∂2f (0, x2).(5.13)

This expression is clearly continuous in x2 ∈ [0,∞) and, by (5.2), we have

lim
x2→∞G2(x) = 0.(5.14)
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Now, consider the case x1 > 0. Hence, by (5.7),

G2(x) =
∫

g(x, y)ν(dy),

where

g(x, y) := θ2

x1
[f (x1y) − f (x) − x1(y1 − 1) ∂1f (x)].

Since f ∈ C2
l (E), for all y ∈ E, we have:

(i) x �→ g(x, y) is continuous on (0,∞) × {0};
(ii) limx1→∞ g(x, y) = 0;

(iii) limx1↓0 g(x, y) = θ2 ∂2f (0,0)y2.

In order to find an integrable dominating function for g, define h :E → [0,∞) by
[recall (5.3) and (5.4)]

h(y) :=
{

θ2‖f ‖2,∞(y1 − 1)2, if y1 ∈ (1
2 , 3

2

)
,

2θ2‖f ‖1,∞(y1 + y2 + 1), otherwise.

Note that the density of ν(dy) decays like 1/(y1 + y2)
3 as y → ∞. Furthermore,

(y1 − 1)2 ν(dy)

dy1
= 4

π

y1

(1 + y1)2

is bounded on (1/2,3/2) × {0}. Hence, we have
∫

hdν < ∞.
For all y ∈ E and x1 > 0, we have

|g(x, y)| ≤ θ2

x1

(|f (x1y) − f (0,0)| + |f (x) − f (0,0)| + x1(y1 + 1)|∂1f (x)|)
≤ 2θ2(y1 + y2 + 1)‖f ‖1,∞.

Furthermore, recalling (5.3), for y1 ∈ (1/2,3/2), by Taylor’s formula, we get that

|g(x, y)| = θ2

x1

∣∣f (
(y1 − 1)x + x

) − f (x) − x1(y1 − 1) ∂1f (x)
∣∣

≤ θ2

2
(y1 − 1)2 sup

u≥x1/2
x1|∂2

1f (u,0)|

≤ θ2‖f ‖2,∞(y1 − 1)2.

Hence, in fact, |g(x, y)| ≤ h(y) for all y ∈ E, x ∈ (0,∞) × {0} and the dominated
convergence theorem yields that G2 shares the properties (i) and (ii) of g(x, ·) and
that

lim
x1↓0

G2(x) = θ2 ∂2f (0,0)

∫
y2ν(dy) = θ2 ∂2f (0,0) = G2(0,0).

Combining this with (5.13) and (5.14), we have G2 ∈ Cl(E). �
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In order to show part (ii) of Theorem 5.3, we will apply the Hille–Yoshida the-
orem for generators of contraction semigroups. Recall, from Corollary 2.4, that V

is dense in Cl(E). Also, by Lemma 2.2, one can easily check that

V ⊂ C2
l (E).

For each z ∈ E, define the map uy : [0,∞) → Cl(E) by uy(t) := StF (·, y).
By [6], Proposition 1.3.4, the operator Gc,θ on Cl(E) with domain D(Gc,θ ) =

C2
l (E) is closable and its closure generates (uniquely) the semigroup (St )t≥0 on

Cl(E) if the following conditions are all fulfilled:

(a) Gc,θ is dissipative;
(b) uy(t) ∈ D(Gc,θ ) for all t > 0;
(c) the map (0,∞) → Cl(E), t �→ Gc,θuy(t) is continuous;
(d) for all t > 0,

uy(t) − uy(0) =
∫ t

0
Gc,θuy(s) ds.(5.15)

Hence, in order to prove part (ii) of Theorem 5.3, it remains to check (a)–(d).
(a) Let f ∈ C2

l (E) and assume that f assumes its maximum at x ∈ E ∪ {∞}.
Since St f (x) ≤ f (x) for all t ≥ 0, equation (5.10) implies that Gc,θf (x) ≤ 0.
Hence, Gc,θ fulfills the positive maximum principle and is thus dissipative (see,
e.g., [6], Lemma 4.2.1).

(b) By Proposition 3.3, for any y ∈ E, x ∈ E and t > 0, we have

uy(t)(x) = StF (·, y)(x) = F(x, e−cty)F
(
θ, (1 − e−ct )y

)
.(5.16)

As F(·, e−cty) is in C2
l (E), so is StF (·, y).

(c) By (5.10), we have

Gc,θuy(t)(x) = lim
ε↓0

ε−1(St+ε − St )F (·, y)(x) = d

dt
(uy(t)(x)).

Using (5.16) and Lemma 2.2, for every x ∈ E, we get

Gc,θ StF (·, y)(x) = 〈−ce−ct y,∇2F(c, e−cty)〉F (
θ, (1 − e−ct )y

)
+ F(x, e−cty)

〈
ce−cty,∇2F

(
θ, (1 − e−ct )y

)〉
= [ce−ct (θ − x) � y]F(x, e−cty)F

(
θ, (1 − e−ct )y

)
.

Hence, t �→ Gc,θuy(t) is clearly continuous [in Cl(E)].
(d) As t �→ Gc,θuy(t) is continuous, it is integrable, and(∫ t

0
Gc,θuy(s) ds

)
(x) =

∫ t

0
Gc,θuy(s)(x) ds = uy(t)(x) − uy(0)(x)

implies (5.15).
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5.3. The martingale problem (proof of Theorem 5.4). Before we prove this
theorem, we derive a duality relation for processes satisfying the martingale prob-
lem (Gc,θ , V ). Recall the definition of Ỹ from (2.11).

LEMMA 5.7. Let μ be a probability measure on E. Let X be any solution of
the martingale problem (Gc,θ , V ) with L[X0] = μ. Then X and Ỹ are dual, in the
sense that for any ỹ ∈ E × [0,∞)2, we have

Eμ[H((Xt , θ), ỹ)] =
∫
E

Eỹ[H((x, θ), Ỹt )]μ(dx) for all t ≥ 0.

PROOF. As X is a solution of the martingale problem, we have that

H((Xt , θ), ỹ) −
∫ t

0
H((Xs, θ), ỹ)[c(θ − Xs) � ỹ(1)]ds

= F(θ, ỹ(2))

(
F(Xt , ỹ(1)) −

∫ t

0
F(Xs, ỹ(1))[c(θ − Xs) � ỹ(1)]ds

)

is a martingale. On the other hand, by (2.16) [since ỹ(1) ∈ E, one term vanishes],

d

dt
Eỹ[H((x, θ), Ỹt )]|t=0 = 〈−cỹ(1),∇2F(x, ỹ(1))〉F(θ, ỹ(2))

+ 〈cỹ(1),∇2F(θ, ỹ(2))〉F(x, ỹ(1))(5.17)

= H((θ, x), ỹ)[c(θ − x) � ỹ(1)].
Since Ỹ is deterministic, we get that

H((x, θ), Ỹt ) −
∫ t

0
H((θ, x), Ỹs)c(θ − x) � Ỹs(1) ds = H((x, θ), ỹ)

is the trivial martingale. By [6], Corollary 4.4.13, this implies that

Eμ[H((Xt , θ), ỹ)] =
∫

Ey[H((x, θ), Ỹt )]μ(dx)

and we are done. �

PROOF OF THEOREM 5.4. By Theorem 5.3(ii) and (5.11), and since V ⊂
Cl(E), by definition of Xc,θ , the process Xc,θ is, in fact, a solution of the martin-
gale problem (Gc,θ , V ).

Now, assume that X and X′ are two solutions with L[X0] = L[X′
0] = μ. By

Lemma 5.7, we get

Eμ[F(Xt , y)] = Eμ[F(X′
t , y)] for all t ≥ 0 and y ∈ E.

By Corollary 2.4, {F(·, y), y ∈ E} is measure determining on E. Hence, Lμ[Xt ] =
Lμ[X′

t ] for all t ≥ 0. By [6], Theorem 4.4.2, this implies that the finite-dimensional
distributions of X and X′ coincide. �
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