
The Annals of Probability
2012, Vol. 40, No. 1, 103–129
DOI: 10.1214/10-AOP621
© Institute of Mathematical Statistics, 2012

INFINITE RATE MUTUALLY CATALYTIC BRANCHING IN
INFINITELY MANY COLONIES: THE LONGTIME BEHAVIOR1

BY ACHIM KLENKE AND LEONID MYTNIK2

Universität Mainz and Technion Haifa

Consider the infinite rate mutually catalytic branching process (IMUB)
constructed in [Infinite rate mutually catalytic branching in infinitely many
colonies. Construction, characterization and convergence (2008) Preprint]
and [Ann. Probab. 38 (2010) 479–497]. For finite initial conditions, we show
that only one type survives in the long run if the interaction kernel is recur-
rent. On the other hand, under a slightly stronger condition than transience,
we show that both types can coexist.

1. Introduction and main results.

1.1. Background and motivation. As a model for mutually catalytic branch-
ing, Dawson and Perkins [5] considered the following system of coupled stochastic
differential equations:

Yi,t (k) = Yi,0(k) +
∫ t

0

∑
l∈S

A(k, l)Yi,s(l) ds

(1.1)

+
∫ t

0
(γ Y1,s(k)Y2,s(k))1/2 dWi,s(k) for t ≥ 0, k ∈ S, i = 1,2.

Here S is a countable set that is thought of as the site space and γ > 0 is a parame-
ter. (In fact, Dawson and Perkins made the explicit choice S = Z

d .) The matrix A
is defined by

A(k, l) = A(k, l) − 1{k=l},(1.2)

where A is the transpose of a stochastic matrix AT indexed by S such that
supk∈S

∑
l∈S A(k, l) < ∞. Note that AT is the q-matrix of the continuous time

Markov chain on S with jump kernel AT . (In fact, Dawson and Perkins assumed
that A be symmetric but this is not substantial.) Finally, (Wi(k), k ∈ S, i = 1,2) is
an independent family of one-dimensional Brownian motions.
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This is a spatial model for the evolution of two populations i = 1,2. Yi,t (k) is
the size of the population of type i at site k ∈ S at time t . The individuals mi-
grate on the site space S according to the discrete space heat flow induced by
AT . Furthermore, at each given site each type of the population undergoes a ran-
dom dynamic that can be interpreted as continuous state Feller’s branching with
a branching rate proportional to the local size of the respective other type. Both
types undergo (independently) the same branching dynamics and influence each
other in a symmetric way—hence the name mutually catalytic branching process.

Dawson and Perkins studied the longtime behavior of this model with summable
initial conditions (and symmetric A) and established a dichotomy of coexistence
versus noncoexistence of types depending on transience and recurrence of the
Markov chain associated with A. Via the self-duality of the mutually catalytic
branching process, its total mass behavior for summable initial conditions pro-
vides information about the local behavior if the initial condition is infinite and
sufficiently homogeneous. For x ∈ [0,∞)2, let x denote the state in ([0,∞)2)S

with xi(k) = xi for all k ∈ S, i = 1,2. Assume that Y0 = x. In [5], Theorem 1.4,
it is shown that Yt converges in distribution to some random field Y∞ as t → ∞.
Furthermore (under some mild regularity assumptions on AT ), we have

Px[Y1,∞(0)Y2,∞(0) > 0] > 0 ⇐⇒ AT is transient.

Hence, in the recurrent case, for constant initial conditions, the two types segregate
locally and form clusters. The assumption that the initial point is constant can be
weakened to an ergodic random initial condition (see [3]).

The starting point for this work was the wish to get a quantitative description
of the cluster growth in the recurrent case. We only briefly give the heuristics.
Dawson and Perkins also constructed a version of their process in continuous space
R instead of S. This process is defined as the solution of the stochastic partial
differential equation

dYi,t (r)

dt
= �Yi,t (r) +

√
γ Y1,t (r)Y2,t (r)Ẇi(t, r) for r ∈ R, i = 1,2,(1.3)

where Ẇ1 and Ẇ2 are independent space time white noises and � is the Laplace
operator. As the Laplace operator generates the semigroup of Brownian motion,
and since Brownian motion on the real line is recurrent, here also the types segre-
gate. Now, due to Brownian scaling, if we denote by Yγ the solution of (1.3) with
that given value of γ , then we obtain

Px

[(
Y

γ
T

(
r
√

T
))

r∈R
∈ ·] = Px[(Y γT

1 (r))r∈R ∈ ·].(1.4)

Equation (1.4) shows that clusters of Y1,T grow like
√

T and that a better under-
standing of the precise cluster formation can be obtained by letting γ → ∞ for
fixed time. The process X that is the limit (in distribution) of Yγ as γ → ∞ is
called the infinite rate mutually catalytic branching process (IMUB).
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In [11], the infinite rate mutually catalytic branching process X was constructed
for S a singleton. It was shown that Yγ converges to X as γ → ∞ and X was
characterized in terms of a martingale problem and in terms of its generator. Since
the two types cannot coexist in the limit γ → ∞, the proper state space for the
one-colony IMUB is

E := [0,∞)2 \ (0,∞)2.

In [10], the IMUB process X was constructed for countable S via approximate
solutions to a related Poisson noise stochastic partial differential equation. Here
X is a strong Markov process that takes values in a suitable subspace of ES that
fulfills some growth condition (Liggett–Spitzer space). More precisely, as shown
in [10], Section 1, for k ∈ S, i = 1,2, the process

Mi,t (k) := Xi,t (k) − Xi,0(k) −
∫ t

0
AXi,s(k) ds, t ≥ 0,(1.5)

is an Lp-martingale for every p ∈ [1,2) (but not for p = 2) that could be repre-
sented as the stochastic integral with respect to a Poisson point process.

Furthermore, the IMUB process X was characterized as the solution to a certain
martingale problem and it was shown that Y γ converges to X (in distribution). In
order to formulate the martingale problem, we need the notation

x 	 y := −(x1 + x2)(y1 + y2) + i(x1 − x2)(y1 − y2) for x, y ∈ E

(with i = √−1) and

〈〈x, y〉〉 = ∑
k∈S

x 	 y

for x, y ∈ ES such that the sum is well-defined. Then the ES valued Markov pro-
cess X with initial value X0 = x is characterized by the requirement that

e〈〈Xt ,y〉〉 − e〈〈x,y〉〉 −
∫ t

0
〈〈AXs, y〉〉e〈〈Xs,y〉〉 ds, t ≥ 0,(1.6)

be a martingale for all suitable y ∈ ES .
In [12], a construction of X is performed via a Trotter type approximation

scheme, see also [15]. Loosely speaking, for given ε > 0, consider a process Xε

that solves (1.1) with γ = 0 in each interval [nε, (n + 1)ε), n ∈ N0. At the times
nε the state Xε

nε− is replaced by the limit (as t → ∞) of a solution Y of (1.1)
with A = 0 and γ > 0 with initial state Y0 := Xε

nε−. That is, the value Xε
nε−(k) at

each colony k ∈ S is replaced (independently) by a point in E chosen randomly
according to the exit distribution of planar Brownian motion in [0,∞)2 started at
Xε

nε−(k). (See Section 2.2 for a more detailed description.) It was shown in [12]
that Xε converges as ε → 0 to a process that solves the martingale problem (1.6).

In this paper, we aim at understanding the longtime behavior of X for summable
initial states x [and thus, in (1.6) we could take any bounded y ∈ ES ]. Let τ be the
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amount of time that two independent Markov chains with q-matrix AT spend to-
gether. We show that if τ has infinite expectation (and AT fulfils some modest
regularity condition), then the types cannot coexist in the long run. On the other
hand, if A fulfills a condition that is somewhat stronger than E[τ ] < ∞, then the
types can coexist in the long run. As X is a process with an infinite variance ran-
dom dynamics, the meta theorem that relates stability of the longtime behavior to
transience of the migration dynamics does not apply here. It remains open to check
if there are cases where E[τ ] < ∞ but coexistence of types is impossible. In par-
ticular, it would be interesting to know if this could happen for certain (transient)
random walk kernels A.

1.2. Results. Before we present our result, we give a more detailed description
the longtime behavior for the case of finite γ and finite initial conditions as stated
in [5]. While segregation of types for constant initial conditions can be rephrased
as “two types cannot be present at the same site” in the longrun, for finite initial
conditions, this does not make sense, as the population dissipates in space anyway.
Here, the notion of (local) segregation of types is replaced by the notion of (global)
noncoexistence of types.

Let

MY
i,t := 〈Yi,t ,1〉 := ∑

k∈S

Yi,t (k), t ≥ 0,(1.7)

be the total mass process of type i = 1,2 and assume that MY
1,0,M

Y
2,0 ∈ (0,∞).

Since MY
1 and MY

2 are (orthogonal) nonnegative martingales, they converge almost
surely and, in fact, also in L1. Denote by MY

i,∞ the limit variables. For the case
where A is a random walk kernel, Theorem 1.2 of [5] takes the concise form

P[MY
1,∞MY

2,∞ > 0] > 0 ⇐⇒ A is transient.(1.8)

In order to formulate the result for the more general case, we have to be a bit
more careful. Let at be the continuous time kernel; that is,

at = exp(At) :=
∞∑

n=0

tnAn

n! =
∞∑

n=0

e−t t
nAn

n! ,(1.9)

where An and An denote the matrix powers. Furthermore, for t ≥ 0, define the
Green kernels

Gt(k, l) :=
∫ t

0
as(k, l) ds and G(k, l) :=

∫ ∞
0

as(k, l) ds.(1.10)

Finally, let

G∗
t := sup

k∈S

Gt(k, k).(1.11)



IMUB: THE LONGTIME BEHAVIOR 107

We say that coexistence of types is possible if P[MY
1,∞MY

2,∞ > 0] > 0 for all
initial states Y0 with MY

1,0,M
Y
2,0 ∈ (0,∞). We say that coexistence of types is

impossible if P[MY
1,∞MY

2,∞ > 0] = 0 for all initial states Y0 with MY
1,0,M

Y
2,0 ∈

[0,∞).
Now, Theorem 1.2 of [5] states the following.

THEOREM 0 (Theorem 1.2 of [5]). Assume that A is symmetric.

(i) If supk∈S G(k, k) < ∞, then coexistence of types is possible.
(ii) If

inf
k∈S

lim inf
t→∞

Gt(k, k)

G∗
t

> 0(1.12)

and if A is recurrent and irreducible, then coexistence of types is impossible.

The theorem describes a dichotomy between a stable behavior (coexistence of
types) and an instable or clustering behavior (segregation of types) depending on
properties of the Green function of the underlying migration dynamics. A sim-
ilar dichotomy along the same line of transience and recurrence (in the case of
migration of random walk type) was observed before for many interacting mod-
els with finite variance dynamics such as the voter model (see [1, 8]), interact-
ing diffusions on a compact interval [2, 14, 17], branching random walk [9], the
generalized smoothing and potlatch process [7], and the so-called linear systems
([13], Chapter IX). If the local dynamics has moments only up to order 1 + β for
some β ∈ (0,1), then the the critical line between the two regimes may shift to
the point where higher powers of the Green operator are finite (see [4]). In the
model we study in this paper, all moments less than the second are finite, and thus
a dichotomy could be expected close to the transience/recurrence line but a little
shifted to the transient side.

In order to prepare for the formulation of our theorem and since we want to
get rid of the symmetry assumption that Dawson and Perkins imposed on A, we
have to introduce some more notation first. Recall that AT (k, l) = A(l, k) is the
transpose of A and define aT

t , GT
t and so on for AT similarly as at , Gt and so on

for A. Furthermore, define the symmetried kernels

āt (k, l) = aT
t/2at/2(k, l) = ∑

m∈S

at/2(m, k)at/2(m, l),

(1.13)
Ā = 1

2(A + AT ) and Ā = 1
2(A + AT ).

Note that (āt )t≥0 is a semigroup (and is generated by Ā) if A AT = AT A. In
particular, if S is an Abelian group and A is a random walk kernel, then (āt )t≥0 is
the semigroup of the difference of two (rate 1/2) random walks and its one step
transition matrix is Ā.
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Define the expected amount of time τ two independent Markov chains with
q-matrix AT spend together:

Ḡ(k, l) := lim
t→∞ Ḡt (k, l) where Ḡt (k, l) :=

∫ t

0
ās(k, l) ds.(1.14)

As mentioned above, for many models with migration and local finite variance
random fluctuations, finiteness of Ḡ is equivalent to stability. We will show for the
IMUB model here that Ḡ(0,0) = ∞ (plus some mild regularity conditions) is suf-
ficient for noncoexistence of types. In order to formulate the regularity conditions
properly, we will also need

Ḡ∗
t := sup

k∈S

Ḡt (k, k).(1.15)

In order to show coexistence of types, we need more refined quantities. Define

ps(k, l) := (
as(A + AT )aT

s

)
(k, l)

(1.16)
= ∑

m,n∈S

as(k,m)
(
A(m,n) + A(n,m)

)
as(l, n).

Let us present a very rough heuristic for the appearance of this object. If we start
with a unit mass of type 1 at k1 and a unit mass of type 2 at k2, then, as we will
show, the expected mass of type i at time s at site m is as(m, ki). Recall that
the types exclude each other at any given site. If type i is absent at m at time s,
then the infinitesimal impact of type i at site m is governed by the immigration at
rate A(m, l) from the other sites l ∈ S; that is, it is of order Aas(m, ki). Summing
over all sites, we see that the expected total “activity” is of order ps(k1, k2). Since
the interaction of types has infinite variance, it is not p itself that is the crucial
quantity, but rather we will see that we will need a logarithmic correction term. In
order quantify the total amount of interaction in the “transient” case, we define

Gp,log(k, l) :=
∫ ∞

0
ps(k, l)

(
1 + | log(ps(k, l))|)ds.(1.17)

It is easy to check that

Gp,log(k, l) ≥
∫ ∞

0
ps(k, l) ds = Ḡ(k, l) − 1{k=l}.

Hence, Gp,log is infinite if Ḡ is infinite.
Define the total mass process

Mi,t := 〈Xi,t ,1〉(1.18)

and assume that M0 ∈ [0,∞)2. Recall the martingales Mi (k) from (1.5) and note
that Mi,t = ∑

k∈S Mi,t (k) since
∑

k∈S A(k, l) = 0 for all l ∈ S. Hence, M1 and M2
are is a nonnegative martingales and therefore the almost sure limits

Zi := lim
t→∞Mi,t
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exist, i = 1,2.
Recall that AT is a stochastic matrix and that A(k, l) = A(k, l) − 1{k=l}.

THEOREM 1. Let X be the infinite rate mutually catalytic branching process
with kernel A. Assume that the initial state is given by

X1,0 = 1{l1} and X2,0 = 1{l2}
for some l1, l2 ∈ S, l1 = l2.

If l1 and l2 are such that Gp,log(l1, l2) is sufficiently small, then there is coexis-
tence of types in the longtime limit; that is, P[Z1 > 0,Z2 > 0] > 0.

THEOREM 2. Assume that A fulfills

sup
k∈S

A(k, k) < 1(1.19)

and

c := inf
k,l∈S

lim inf
t→∞

Ḡt (k, l)

Ḡ∗
t

> 0.(1.20)

Then coexistence of types is impossible; that is, if M0 ∈ [0,∞)2, then Z1Z2 = 0
almost surely.

REMARK 3. (i) Note that in the case where A = AT , condition (1.20) implies
irreducibility of A. Furthermore, if A = AT is recurrent and irreducible, due to the
strong Markov property, (1.20) is equivalent to (1.12).

(ii) Assume that S is an Abelian group and A is a random walk kernel. In this
case, (1.20) is equivalent to Ā being irreducible and recurrent. In particular, (1.20)
holds if A is irreducible and recurrent.

(iii) For symmetric simple random walk on the d-dimensional integer lattice Z
d ,

d ≥ 3, it is simple to show (using the CLT), that Gp,log(l1, l2) ≈ cd‖l1 − l2‖2−d as
‖l1 − l2‖ → ∞, for some constant cd ∈ (0,∞). Hence, the assumptions of Theo-
rem 1 are fulfilled for simple random walk with the two populations being suffi-
ciently far apart.

The proofs in [5] heavily rely on second moment methods. The main difficulty
in the proofs here is the lack of second moments. (For this reason, presumably the
statement of Theorem 1 fails under the weaker assumption that only Ḡ < ∞.) The
strategy of proof for Theorem 1 is therefore to introduce for K > 0 an auxiliary
process XK whose jumps in each coordinate are suppressed when they lead out of
the square [0,K]2. This is done in such a way that the coordinate processes (minus
the drifts) become square integrable orthogonal martingales. For these martingales,
we use the conditions on Gp,log to estimate the conditional quadratic variation
process.

The proof of Theorem 2 also uses the auxiliary process XK and its conditional
quadratic variation process, but the arguments are more involved.
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1.3. Organization of the paper. In Section 2, we prove Theorem 1. First, we
derive basic properties of Brownian motion in [0,K]2 stopped upon hitting the
boundary such as hitting distribution, moments and so on. Then we construct the
auxiliary process XK and conclude Theorem 1 via second moment estimates.

In Section 3, we prove Theorem 2.

2. Coexistence of types, proof of Theorem 1. In Section 2.1, we perform
some preliminary calculations for the variance of planar Brownian motion in
[0,K]2 stopped upon hitting the boundary. In Section 2.2, we construct the auxil-
iary process XK . In Section 2.3, we show that the coordinates of XK are orthogo-
nal martingales and we compute their conditional quadratic variation. In the final
Section 2.4, we put the ends together to conclude the proof of Theorem 1.

2.1. Brownian motion in a square. Denote by Q the harmonic measure of
planar Brownian motion in [0,∞)2. That is, if B = (B1,B2) is a Brownian motion
in R

2 started at x ∈ [0,∞)2 and

τ0 := inf{t > 0 :Bt /∈ (0,∞)2},
then we define

Qx := Px[Bτ0 ∈ ·].(2.1)

If x = (u, v) ∈ (0,∞)2, then the harmonic measure Qx has a one-dimensional
Lebesgue density on E that can be computed explicitly:

Q(u,v)(d(ū, v̄)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

π

uvū

4u2v2 + (ū2 + v2 − u2)2 dū, if v̄ = 0,

4

π

uvv̄

4u2v2 + (v̄2 + u2 − v2)2 dv̄, if ū = 0.
(2.2)

Furthermore, trivially, we have that Qx = δx if x ∈ E.
In [11], it is shown that for x ∈ (0,∞)2 and p ∈ (0,2), we have∫

yiQx(dy) = xi(2.3)

and

Ex[τp/2
0 ] < ∞.(2.4)

Applying the Burkholder–Davis–Gundy inequality, this implies that∫
y

p
i Qx(dy) < ∞.(2.5)

However, for p = 2, we have ∫
y2
i Qx(dy) = ∞.(2.6)
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Now consider planar Brownian motion B on [0,K]2 and its harmonic measure
QK defined by

QK
x := Px[BτK

∈ ·],
where

τK := inf{t > 0 :Bt /∈ (0,K)2}.
Due to the obvious scaling, we can restrict ourselves mostly to K = 1. For sim-
plicity, we define τ := τ1.

LEMMA 2.1. For all x ∈ [0,1]2 and i = 1,2, we have∫
yiQ

1
x(dy) = xi.(2.7)

Furthermore,

V (x) := Ex[τ ] =
∫

(yi − xi)
2Q1

x(dy)(2.8)

and ∫
(y1 − x1)(y2 − x2)Q

1
x(dy) = 0.(2.9)

PROOF. (Bi,t∧τ )t≥0 is a bounded martingale and t ∧ τ is its quadratic vari-
ation. Hence, (2.7) and (2.8) are simple consequences of the optional stopping
theorem for martingales. Similarly, (2.9) follows from the fact that the product
(B1,t∧τB2,t∧τ )t≥0 is a bounded martingale. �

LEMMA 2.2. For x = (u, v) ∈ [0,1]2, V (u, v) has the Fourier expansion

E(u,v)[τ ] = V (u, v) =
∞∑

m=0

∞∑
n=0

cm,n sin
(
(2m + 1)πu

)
sin

(
(2n + 1)πv

)
,(2.10)

where

cm,n := 32

π4

1/(2m + 1)1/(2n + 1)

(2m + 1)2 + (2n + 1)2 for all m,n ∈ N0.(2.11)

PROOF. It is well known that V is the unique solution of the Poisson equation
with Dirichlet boundary condition

1
2�g = −1 in (0,1)2,

(2.12)
g = 0 at ∂(0,1)2.
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Denote by g(u, v) the right-hand side in (2.10). Clearly, g = 0 at ∂(0,1)2. Further-
more, for u, v ∈ (0,1),

1

2
�g(u, v) = −

(
4

π

∞∑
m=0

sin((2m + 1)πu)

2m + 1

)(
4

π

∞∑
n=0

sin((2n + 1)πv)

2n + 1

)

(2.13)
= −1,

where the last equality follows from the fact that each factor is the Fourier series
of the function on (0,1) that is constant 1. Hence, we have g = V . �

COROLLARY 2.3. For planar Brownian motion B in [0,K]2, we have

E(u,v)[τK ] = K2V (u/K,v/K)

and

Cov(u,v)[Bi,τK
,Bj,τK

] = K2V (u/K,v/K)1{i=j}.

PROOF. This follows from Brownian scaling. �

LEMMA 2.4. For all u, v ∈ [0,1], we have

V (u, v) ≥ 2u(1 − u)v(1 − v).(2.14)

PROOF. Let f (u, v) = 2u(1 − u)v(1 − v). Then
1
2�f (u, v) = −2[u(1 − u) + v(1 − v)] ≥ −1.

Hence, by the maximum principle, f is a sub-solution for the Poisson problem
(2.12) which shows f ≤ V . �

PROPOSITION 2.5. Let K > 0 and let B be Brownian motion in [0,K]2. Then
for all u, v ∈ [0,K], we have

Cov(u,v)[Bi,τK
,Bj,τK

] = V (u/K,v/K)K21{i=j}
(2.15)

≤ 8uv
[
1 + log(K) + (

log(1/u) ∧ log(1/v)
)]

1{i=j}
and for all u, v ∈ [0,K/2], we have

Cov(u,v)[Bi,τK
,Bj,τK

] ≥ 1
2uv1{i=j}.(2.16)

PROOF. The first equality is due to Brownian scaling. Hence, it is enough
to consider the case K = 1. Note that (2.16) is an immediate consequence of
Lemma 2.4. Hence, we concentrate on showing (2.15).

We have to show that [with V from (2.10)]

V (u, v) ≤ 8uv[1 + log(1/u)].(2.17)
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By symmetry in u and v, this implies (2.15).
As V (u, v) is bounded by the expected time one-dimensional Brownian motion

started at v needs to hit {0,1}, we have V (u, v) ≤ v(1−v) ≤ v for all u, v ∈ [0,1].
Hence, for u > 1/3, (2.17) holds with the factor 8 replaced by 3/(1 + log(3)) ≤ 2.

We may and will now assume that u ≤ 1/3. Let M ∈ N be such that 1
2M+3 <

u ≤ 1
2M+1 . We will show that

V (u, v) ≤ 8uv[1 + log(M)] for v ∈ [0,1],M ∈ N.(2.18)

We estimate | sin((2m + 1)πu)| ≤ π(2m + 1)u for m ≤ M − 1 and | sin((2m +
1)πu)| ≤ 1 for m ≥ M , as well as | sin((2n + 1)πv)| ≤ π(2n + 1)v. Hence, we
obtain

V (u, v) =
∞∑

n=0

M−1∑
m=0

cm,n sin
(
(2m + 1)πu

)
sin

(
(2n + 1)πv

)

+
∞∑

n=0

∞∑
m=M

cm,n sin
(
(2m + 1)πu

)
sin

(
(2n + 1)πv

)

≤ 32uv

π2

M−1∑
m=0

∞∑
n=0

1

(2m + 1)2 + (2n + 1)2

+ 32v

π3

∞∑
m=M

1

2m + 1

∞∑
n=0

1

(2m + 1)2 + (2n + 1)2

=: IM(u, v) + JM(u, v).

The two summands will be estimated separately. First, note that

IM(u, v) ≤ 32uv

π2

M−1∑
m=0

∫ ∞
0

1

(2m + 1)2 + t2 dt

= 16uv

π

M−1∑
m=0

1

2m + 1
≤ 16uv

π
[1 + log(M)].

Similarly, we get (note that 5M ≥ 2M + 3 ≥ 1/u by the assumption on M)

JM(u, v) ≤ 16v

π2

∞∑
m=M

1

(2m + 1)2 ≤ 4v

π2

1

M
≤ 20v

π2

1

2M + 3
≤ 20

π2 uv.

Summing up and noting that 16/π + 20/π2 ≤ 8, we obtain (2.18). �

2.2. Construction of the truncated process. The aim of this section is to con-
struct a process XK that approaches X as K → ∞ and which has finite second
moments. The idea is to suppress the large jumps of X so that the remaining jumps
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have second moments. It turns out that if we proceed a bit more subtly, then we can
obtain even that the coordinate processes of XK are orthogonal square integrable
martingales and that we can control the conditional quadratic variation process.
The rough idea is as follows. The jumps of X can be interpreted as being driven by
the positional changes of planar Brownian motion at its exit points from [0,∞)2.
For the process XK , we stop this planar Brownian motion when it exits [0,K]2.

We could proceed in two ways to construct XK :

(1) We could imitate the SPDE construction of X (see [10]) by replacing the
intensity measure on E of the Poisson point process by a suitable intensity measure
on [0,K]2 \ (0,K)2.

(2) We could imitate the Trotter type construction of X (see [12]) by replacing
the harmonic measure Q on [0,∞)2 by the harmonic measure QK on [0,K]2.

Here, we follow the latter approach. In [12], the following was done in order to
construct X: For fixed ε > 0, consider the stochastic process Xε with values in
([0,∞)2)S with the following dynamics:

(i) Within each time interval [nε, (n + 1)ε), n ∈ N0, Xε is the solution of

dXε
i,t (k) = (AXε

i,t )(k) dt for t ∈ [
nε, (n + 1)ε

)
, k ∈ S.

Clearly, the explicit solution is

Xε
i,t (k) = (at−nεX

ε
i,nε)(k) for t ∈ [

nε, (n + 1)ε
)
.

(ii) At time nε, Xε has a discontinuity. Independently, each coordinate
Xε

nε−(k) = aεX
ε
(n−1)ε(k) is replaced by a random element of E drawn according

to the distribution QXε
nε−(k).

In order for the solution in Step (i) to be well defined, we have to impose some
growth condition on the initial states (see [12], Theorem 1). Since here we are
interested in finite initial states, this growth condition is automatically fulfilled.

In [12], it was shown that Xε converges as ε → 0 to X in the Skorohod space
of paths [0,∞) → ([0,∞)2)S . Define

τK := inf{t > 0 : 〈X1,t + X2,t ,1〉 ≥ K/2}.
Clearly, τK is a stopping time and by Doob’s inequality, we get

P[τK < ∞] ≤ 2
〈X1,0 + X2,0,1〉

K
.

Now, assume that 〈x1 + x2,1〉 < K . We construct XK,ε with initial condition x

just as X but with two differences:

(1) In Step (ii) above, we replace E by [0,K]2 \ (0,K)2 and Q by QK .
(2) If 〈XK,ε

1,nε + X
K,ε
2,nε,1〉 > K/2, then Step (ii) above is omitted.
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Note that Step (i) preserves the total mass, hence once the total mass exceeds K/2,
the process XK,ε is simply the discrete space heat flow with kernel A. Denote by

τK,ε := inf{t > 0 : 〈XK,ε
1,t + X

K,ε
2,t ,1〉 ≥ K/2}

the time when this first happens. Note that due to the strong Markov property of
planar Brownian motion, we have

Qx =
∫
[0,K]2\(0,K)2

QK
x (dy)Qy.

Hence, Xε and XK,ε can be coupled to coincide almost surely until τK,ε . Since
Xε converges, this implies that also (X

K,ε

τK,ε∧t
)t≥0 converges in the Skorohod space

as ε → 0. Since the A heat flow clearly exists, in fact, XK,ε converges as ε → 0 to
some process XK . Clearly,

M
K,ε
i,t (k) := X

K,ε
i,t (k) −

∫ t

0
(AX

K,ε
i,s )(k) ds, i = 1,2, k ∈ S,

are orthogonal square integrable martingales with conditional quadratic variation
process [see (2.8) and (2.15)]

〈MK,ε
i (k)〉t = ∑

n : nε≤t∧τK,ε

K2V (X
K,ε
1,nε−/K,X

K,ε
2,nε−/K).

Upper bound for the conditional quadratic variation. Let I be the identity
matrix. Note that for each n with (n − 1)ε < τK,ε , we either have X

K,ε
1,(n−1)ε(k) =

0 [which implies X
K,ε
1,nε−(k) = (aε − I )X

K,ε
1,(n−1)ε(k)] or X

K,ε
2,(n−1)ε(k) = 0 [which

implies X
K,ε
2,nε−(k) = (aε − I )X

K,ε
2,(n−1)ε(k)]. Also note that by Proposition 2.5, we

have K2V (u/K,v/K) ≤ uhK(v) and K2V (u/K,v/K) ≤ vhK(u), where

hK(u) := 8u
(
1 + log(K/u)

)
.(2.19)

Hence, we get

〈MK,ε
i (k)〉t ≤ ε

∑
n : nε≤t∧τK,ε

ε−1(aε − I )X
K,ε
1,(n−1)ε(k)hK(X

K,ε
2,nε−(k))

+ ε−1(aε − I )X
K,ε
2,(n−1)ε(k)hK(X

K,ε
1,nε−(k)).

Since bounded L2-martingales converge to bounded L2-martingales, and since

ε−1(aε − I )(k, l)
ε→0−→ A(k, l) for k = l, we get that

MK
i,t (k) := XK

i,t (k) −
∫ t

0
(AXK

i,s)(k) ds, i = 1,2, k ∈ S,(2.20)

are orthogonal square integrable martingales with conditional quadratic variation
processes

〈MK
i (k)〉t ≤

∫ t

0

(
AXK

1,s(k)hK(XK
2,s(k)) + AXK

2,s(k)hK(XK
1,s(k))

)
ds.(2.21)
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Lower bound for the conditional quadratic variation. Define

τK := inf{t > 0 : 〈XK
1,t + XK

2,t ,1〉 ≥ K/2}.(2.22)

By Doob’s inequality,

P[τK < ∞] ≤ 2
〈X1,0 + X2,0,1〉

K
.

Furthermore, XK coincides with X (in distribution) until time τK . By Proposi-
tion 2.5, we have

〈MK,ε
i (k)〉t ≥ 1

2

∑
n : nε≤t∧τK,ε

X
K,ε
1,nε−(k)X

K,ε
2,nε−(k)

= 1

2

∑
n : nε≤t∧τK,ε

aεX
K,ε
1,(n−1)ε(k)aεX

K,ε
2,(n−1)ε(k).

Recall that aε(k, l) = e−ε1{k=l} + e−εεA(k, l) + · · ·. Since X
K,ε
1,(n−1)ε(k) ×

X
K,ε
2,(n−1)ε(k) = 0 for all n ≤ τK,ε , we have

〈MK,ε
i (k)〉t ≥ 1

2
εe−ε

∑
n : nε≤t∧τK,ε

[
AX

K,ε
1,(n−1)ε(k)X

K,ε
2,(n−1)ε(k)

+ X
K,ε
1,(n−1)ε(k)AX

K,ε
2,(n−1)ε(k)

]
,

where we also used AX
K,ε
i,(n−1)ε(k)X

K,ε
3−i,(n−1)ε(k) = AX

K,ε
i,(n−1)ε(k)X

K,ε
3−i,(n−1)ε(k)

for (n − 1)ε < τK,ε .
Since (X

K,ε
i )ε>0 is a convergent sequence of bounded square integrable martin-

gales, also the conditional quadratic variation processes converge and we infer for
t ≥ s ≥ 0,

〈MK
i (k)〉t − 〈MK

i (k)〉s
(2.23)

≥ 1

2

∫ t∧τK

s∧τK

(
AXK

1,r (k)XK
2,r (k) + AXK

2,r (k)XK
1,r (k)

)
dr.

2.3. Truncated process and martingales. In order not to interrupt the flow of
the argument later, we start here with a lemma.

LEMMA 2.6. Let Y and Z be nonpositively correlated nonnegative random
variables and assume that h : [0,∞) → [0,∞) is concave and monotone increas-
ing. Then E[Yh(Z)] ≤ E[Y ]h(E[Z]).

PROOF. If E[Z] = 0, then we even have equality. Now, assume that E[Z] > 0.
By concavity of h, there exists a real number b ∈ R such that for all z ≥ 0,

h(z) ≤ h(E[Z]) + (z − E[Z])b.
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Since h is nondecreasing, we have b ≥ 0 and thus

E[Yh(Z)] ≤ E
[
Y

(
h(E[Z]) + (Z − E[Z])b)] ≤ E[Y ]h(E[Z]). �

Let l1, l2 ∈ S and let XK be the truncated process with initial state XK
0 =

(1{l1},1{l2}).
Writing (2.20) in the form

XK
i,t (k) = XK

i,0(k) + ∑
l∈S

∫ t

0
at−s(k, l) dMK

i,s(l),

and recalling that the MK
i (l) are orthogonal martingales, we get that the random

variables XK
1,s(k) and XK

2,s(l) are uncorrelated for k, l ∈ S. Hence, AXK
i,s(l) and

XK
3−i,s(l) are uncorrelated. Note that x �→ hK(x) [defined in (2.19)] is concave

and monotone increasing for x ≤ K . Hence, by Lemma 2.6, we get that

E[〈MK
i (l)〉t ] ≤

2∑
j=1

∫ t

0
hK(E[XK

j,s(l)])E[AXK
3−j,s(l)]ds.(2.24)

Denote by

MK
i = ∑

k∈S

MK
i (k) = 〈XK

i ,1〉, i = 1,2,(2.25)

the total mass process of XK
i . Then (2.24) implies

Var[MK
i,t ] = E[〈MK

i 〉t ]
= ∑

l∈S

E[〈MK
i (l)〉t ](2.26)

≤
2∑

j=1

∫ ∞
0

∑
l∈S

hK((asXj,0)(l))(AasX3−j,0)(l) ds.

Using again the concavity of hK and Jensen’s inequality [for the probability mea-
sure l �→ (Aas)(l, k)], we get

Var[MK
i,t ] ≤

2∑
j=1

∫ ∞
0

∑
k∈S

X3−j,0(k)hK

(∑
l∈S

(Aas)(l, k)(asXj,0)(l)

)
ds.(2.27)

Now, recall that the initial states are Xi,0 = 1{li} and that ps = (as(A+AT )aT
s ).

Hence, we obtain

Var[MK
i,t ] ≤

2∑
j=1

∫ ∞
0

hK(ps(l1, l2)) ds ≤ 8 log(K)Gp,log(l1, l2).(2.28)

Hence, MK
1 and MK

2 are (orthogonal) L2-bounded martingales and thus converge
almost surely and in L2 to some random variables MK

1,∞ and MK
2,∞ with E[MK

i ] =
1 and Var[MK

i,∞] ≤ 8 log(K)Gp,log(l1, l2).
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2.4. Proof of Theorem 1. Clearly, the product MK
1 · MK

2 is a uniformly inte-
grable martingale, hence

E[MK
1,∞MK

2,∞] = E[MK
1,0M

K
2,0] = 1.(2.29)

Write

M̂K
i := MK

i,∞1{τK<∞}.

Since we have XK = X on τK = ∞, in order to show Theorem 1, it is enough to
show that E[MK

1,∞MK
2,∞1{τK=∞}] > 0. To this end, we compute

E
[
MK

1,∞MK
2,∞1{τK=∞}

]

= E[MK
1,∞MK

2,∞] − E[MK
1,∞M̂K

2 ] − E[M̂K
1 MK

2,∞] + E[M̂K
1 M̂K

2 ].
By (2.29), it is thus enough to show that

E[MK
1,∞M̂K

2 ] < 1
2 and E[M̂K

1 MK
2,∞] < 1

2 .(2.30)

Although MK
1,∞ and MK

2,∞ are uncorrelated, this is not true for M̂K
1 and MK

2,∞ (at
least we cannot show this). Hence, we have to use a slightly more subtle argument.
We employ the Cauchy–Schwarz inequality to estimate

E[MK
1,∞M̂K

2 ]2 ≤ E[(MK
1,∞)2]E[(M̂K

1 )2]
= (1 + Var[MK

1,∞])E[(M̂K
1 )2](2.31)

≤ (
1 + 8 log(K)Gp,log(l1, l2)

)9
4K2.

Recall that K > 2 is fixed. Now, choose l1 and l2 such that Gp,log(l1, l2) gets
so small that the right-hand side in (2.31) is bounded by 1

4 . Similarly, we get

E[M̂K
1 MK

2,∞]2 < 1
4 .

This shows (2.30) and thus completes the proof of Theorem 1.

3. Noncoexistence of types, proof of Theorem 2. The strategy of proof is
described in the following two steps.

Step 1. Replace the process X by the approximate process XK constructed in
Section 2.2. If X would have coexistence of types, then so would XK (for some
large K).

Step 2. Since MK
i,t = 〈XK

i,t ,1〉, t ≥ 0, is a convergent martingale with bounded
jump size, also the conditional quadratic variation process 〈MK

1,·〉 converges. We
derive a lower bound for 〈MK

1,·〉 and show that due to the recurrence of A, this
lower bound would diverge with positive probability if XK had coexistence of
types. Hence, there can be no coexistence of types for XK and thus neither for X.
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3.1. Step 1: The approximate process. Assume that for X, coexistence of types
is possible. We will lead this assumption to a contradiction.

Recall that Mi,t := 〈Xi,t ,1〉, t ≥ 0, i = 1,2, are the total mass processes. Co-
existence of types means that there exists a deterministic initial state X0 such that
Mi,t < ∞, i = 1,2, and such that

lim
t→∞M1,tM2,t > 0 with positive probability.

(Recall from the discussion prior to Theorem 1 that the total mass processes are
nonnegative martingales and are hence convergent.) We use Lemma 3.1 below
(with Zt = M1,tM2,t ) to infer that there exists a δ > 0, such that

P[M1,tM2,t ≥ δ for all t ≥ 0] ≥ 6δ.(3.1)

LEMMA 3.1. Let (Zt )t≥0 be a nonnegative right continuous supermartingale.
Then

inf{Zt : t ≥ 0} > 0 a.s. on the event
{

lim
t→∞Zt > 0

}
.

PROOF. Let (Ft )t≥0 denote the natural filtration of Z. By the martingale con-
vergence theorem, (Zt ) converges almost surely to some limit Z∞. Fix num-
bers T ,S > 0 with T > S + 1. For ε > 0, define the bounded stopping time
τε := inf{t ≥ 0 :Zt ≤ ε} ∧ (S + 1). By the optional sampling theorem for right
continuous supermartingales (see, e.g., [6], Theorem II.2.13), we get

Zτε ≥ E[ZT |Fτε ] a.s.

By Markov’s inequality, we infer for δ > 0, that P[ZT ≥ δ|Fτε ] ≤ Zτε/δ and, in
particular,

P[ZT ≥ δ and τε ≤ S] ≤ ε

δ
.

Letting ε ↓ 0 and then δ ↓ 0 yields

P
[
ZT > 0 and inf{Zt : t ∈ [0, S]} = 0

] = 0.

Letting T → ∞ gives

P
[
Z∞ > 0 and inf{Zt : t ∈ [0, S]} = 0

] = 0.

Since (Zt ) converges, this implies

P[Z∞ > 0 and inf{Zt : t ≥ 0} = 0] = 0. �

Recall δ defined in (3.1) and define

K := 2

δ
(M1,0 + M2,0).
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Let XK denote the truncated process defined in Section 2.2 with XK
0 = X0. Recall

that (MK
i,t )t≥0 is the total mass process of XK

i and that it is a martingale. Hence,
we have

P[F ] ≥ 1 − δ,(3.2)

where

F := {MK
1,t + MK

2,t ≤ K/2 for all t ≥ 0}.(3.3)

Also

P[M1,t + M2,t ≤ K/2 for all t ≥ 0] ≥ 1 − δ.

We can couple XK and X such that both processes coincide on F . Hence, for

B := {MK
1,tM

K
2,t ≥ δ for all t ≥ 0},

we have

P[B] ≥ P[F ∩ B] ≥ P[M1,tM2,t ≥ δ for all t ≥ 0] − P[Fc] ≥ 5δ.(3.4)

3.2. Step 2: The lower bound for the conditional quadratic variation. Denote
by (〈MK

1,·〉t )t≥0 the conditional quadratic variation process of (MK
1,t )t≥0. Since MK

1

is a martingale whose jumps are bounded (by K), convergence of MK
1 implies

almost sure convergence of 〈MK
1,·〉t → 〈MK

1,·〉∞ < ∞ as t → ∞. Hence, for any
ε > 0 and δ > 0, there exists a T0 such that

P[〈MK
1,·〉t − 〈MK

1,·〉T0 > ε] ≤ δ for all t ≥ T0.(3.5)

The aim of this section is to show that (3.4) leads to a contradiction to (3.5) which
shows that the assumption that for X coexistence of types would be possible was
wrong.

Fix δ > 0. We choose an appropriate ε > 0 for a contradiction via the following
procedure. Recall (1.19) and define

A∗(k) := 1 − A(k, k) and A∗ := inf
k∈S

A∗(k) > 0.(3.6)

Recall c from (1.20) and define

c′ := A∗c
16

.(3.7)

Let

R := 2 + 2K2

δ3c′ .(3.8)

Furthermore, define

ε := δ2c′

R + 1
.(3.9)
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Note that

ε − c′δ2 = −Rε and
K2

R2ε
≤ δ.(3.10)

Recall from (2.20) that MK
1 (k), k ∈ S, are orthogonal martingales and that

MK
1 = ∑

k∈S MK
1 (k). Hence, by (2.23), for t ≥ T0, we have

〈MK
1,·〉t − 〈MK

1,·〉T0 = ∑
k∈S

(〈MK
1 (k)〉t − 〈MK

1 (k)〉T0

)

≥ 1

2

∑
k∈S

∫ t∧τK

T0∧τK

(
AXK

1,s(k)XK
2,s(k) + AXK

2,s(k)XK
1,s(k)

)
ds,

where τK is defined in (2.22). Define

Zt = 1

2

∑
k∈S

∫ t

T0

XK
1,s(k)AXK

2,s(k) + XK
2,s(k)AXK

1,s(k) ds for t ≥ T0.(3.11)

Note that τK = ∞ on F . Hence, for all t ≥ T0,

〈MK
1,·〉t − 〈MK

1,·〉T0 ≥ Zt on F.(3.12)

LEMMA 3.2. For any k1, k2 ∈ S, k1 = k2, and t ≥ T0, let Nt(k1, k2) be given
by

Nt(k1, k2)

= ∑
l,l′∈S

l =l′

∫ t

T0

at−s(k1, l
′)at−s(k2, l)

(
XK

1,s(l
′) dMK

2,s(l) + XK
2,s(l) dMK

1,s(l
′)

)
.

Then for t ≥ T0, on F we have

XK
1,t (k1)X

K
2,t (k2)

= at−T0X
K
1,T0

(k1)at−T0X
K
2,T0

(k2)

− ∑
l∈S

∫ t

T0

at−s(k1, l)at−s(k2, l)
(
XK

1,s(l)AXK
2,s(l) + XK

2,s(l)AXK
1,s(l)

)
ds

+ Nt(k1, k2).

PROOF. This is an immediate consequence of (2.20), the fact that

XK
1,t (k)XK

2,t (k) = 0 for all k ∈ S, if t ≤ τK,

and of τK = ∞ on F . �
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LEMMA 3.3. On the event F , the following decomposition holds:

Zt = Z
(1)
t − Z

(2)
t + Z

(3)
1,t + Z

(3)
2,t for t ≥ T0,(3.13)

where

Z
(1)
t = ∑

l∈S

∫ t

T0

as−T0X
K
1,T0

(l)
(

Ā(as−T0X
K
2,T0

)(l) + A∗(l)as−T0X
K
2,T0

(l)
)
ds,

Z
(2)
t = ∑

l∈S

∑
k∈S

∫ t

T0

∫ s

T0

as−r (l, k)
[(

Āas−r (·, k)
)
(l) + A∗(l)as−r (l, k)

]

× (
XK

1,r (k)AXK
2,r (k) + AXK

1,r (k)XK
2,r (k)

)
dr ds,

Z
(3)
i,t = ∑

l =l′
Ā(l, l′)

× ∑
k∈S

∫ t

T0

∫ s

T0

as−r (l, k)

× (
as−rX

K
3−i,r (l

′) − as−r (l
′, k)XK

3−i,r (k)
)
dMK

i,r (k) ds.

PROOF. By definition,

Zt = 1

2

2∑
i=1

∑
k∈S

∫ t

T0

XK
i,s(k)AXK

3−i,s(k) ds

= 1

2

2∑
i=1

∑
k∈S

∫ t

T0

XK
i,s(k)

∑
l∈S

(
A(k, l) − 1{k=l}

)
XK

3−i,s(l) ds

= ∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)X
K
1,s(k1)X

K
2,s(k2) ds,

where the last inequality follows since XK
1,t (k)XK

2,t (k) = 0 for all k ∈ S, t ≥ 0 on F .
Now, by Lemma 3.2, we have

Zt = ∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)as−T0X
K
1,T0

(k1)as−T0X
K
2,T0

(k2) ds

− ∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)
∑
l∈S

∫ s

T0

as−r (k1, l)as−r (k2, l)

× (
XK

1,r (l)AXK
2,r (l) + XK

2,r (l)AXK
1,r (l)

)
dr ds

+ ∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)Ns(k1, k2) ds.
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Let us consider the first term on the right-hand side of the above equation. We
easily get that

∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)as−T0X
K
1,T0

(k1)as−T0X
K
2,T0

(k2) ds

= ∑
k1∈S

∫ t

T0

as−T0X
K
1,T0

(k1)
(

Āas−T0X
K
2,T0

(k1) + A∗(k1)as−T0X
K
2,T0

(k1)
)
ds

= Z
(1)
t

and we are done with the first term in the decomposition. Similarly, for the second
term, we have

∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)
∑
l∈S

∫ s

T0

as−r (k1, l)as−r (k2, l)

× (
XK

1,r (l)AXK
2,r (l) + XK

2,r (l)AXK
1,r (l)

)
dr ds

= ∑
l∈S

∑
k1∈S

∫ t

T0

∫ s

T0

as−r (k1, l)[Āas−r (·, l)(k1) + A∗(k1)as−r (k1, l)]

× (
XK

1,r (l)AXK
2,r (l) + XK

2,r (l)AXK
1,r (l)

)
dr ds

= Z
(2)
t .

For the third term, we have

∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)Ns(k1, k2) ds

= ∑
k1,k2∈S

k1 =k2

∫ t

T0

Ā(k1, k2)
∑

l,l′∈S

l =l′

∫ s

T0

as−r (k1, l
′)as−r (k2, l)

× (
XK

1,r (l
′) dMK

2,r (l) + XK
2,r (l) dMK

1,r (l
′)

)
ds

= ∑
k1,k2∈S

k1 =k2

Ā(k1, k2)

×
∫ t

T0

∫ s

T0

{∑
l∈S

as−r (k2, l)

× (
as−rX

K
1,r (k1) − as−r (k1, l)X

K
1,r (l)

)
dMK

2,r (l)
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+ ∑
l′∈S

as−r (k1, l
′)

(
as−rX

K
2,r (k2)

− as−r (k2, l
′)XK

2,r (l
′)

)
dMK

1,r (l
′)

}
ds

= ∑
k1,k2∈S

k1 =k2

Ā(k1, k2)

×
∫ t

T0

∫ s

T0

{∑
l∈S

as−r (k2, l)

× (
as−rX

K
1,r (k1) − as−r (k1, l)X

K
1,r (l)

)
dMK

2,r (l)

+ ∑
l∈S

as−r (k2, l)
(
as−rX

K
2,r (k1)

− as−r (k1, l)X
K
2,r (l)

)
dMK

1,r (l)

}
ds

= Z
(3)
1,t + Z

(3)
2,t ,

where the third equality follows by the symmetry of Ā. �

LEMMA 3.4. Recall Ḡ∗ from (1.15). For all t ≥ T0, on F we have

Z
(2)
t ≤ Ḡ∗

2(t−T0)

2
Zt .

PROOF. Recall (1.13) and (1.14) and note that (with I the unit matrix)∫ t

0
aT
r Āar dr = 1

2
(ā2t − I ).(3.14)

Hence [using that A∗(l) ≤ 1],

Z
(2)
t ≤ ∑

k∈S

∫ t

T0

∫ t

r

[
aT
s−r Āas−r + ā2(s−r)

]
(k, k) ds

× [XK
1,r (k)AXK

2,r (k) + AXK
1,r (k)XK

2,r (k)]dr

= ∑
k∈S

∫ t

T0

(
1

2

(
ā2(t−r)(k, k) − 1

) +
∫ t

r
ā2(s−r)(k, k) ds

)

× [XK
1,r (k)AXK

2,r (k) + AXK
1,r (k)XK

2,r (k)]dr.

Then use the fact that āt (k, k) − 1 ≤ 0 and

AXK
i,r (k)XK

3−i,r (k) = AXK
i,r (k)XK

3−i,r (k) on F
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to get that on F , Z
(2)
t is bounded above by

1

2

∑
k∈S

∫ t

T0

Ḡ2(t−r)(k, k)
(

AXK
1,r (k)XK

2,r (k) + XK
1,r (k)AXK

2,r (k)
)
dr

≤ 1

2
Ḡ∗

2(t−T0)

∫ t

T0

∑
k∈S

(
AXK

1,r (k)XK
2,r (k) + XK

1,r (k)AXK
2,r (k)

)
dr

= 1

2
Ḡ∗

2(t−T0)
Zt . �

Next we will handle Z
(3)
i .

LEMMA 3.5. For all t ≥ 0 and for i = 1,2, we have

Z
(3)
i,t = ∑

k∈S

∫ t

T0

hi(k, t, r) dMK
i,r(k),(3.15)

where for t sufficiently large

|hi(k, t, r)| ≤ Ḡ∗
2(t−T0)

MK
3−i,r for all r ∈ [T0, t].

PROOF. First, by the stochastic Fubini theorem (see, e.g., Theorem IV.64 in
[16]), we can change the order of integration in order to get

hi(k, t, r) = ∑
l,l′∈S

l =l′

Ā(l, l′)
∫ t

r
as−r (l, k)

(
as−rX

K
3−i,r (l

′) − as−r (l
′, k)XK

3−i,r (k)
)
ds

=
∫ t

r
aT
s−r Āas−rX

K
3−i,r (k) − aT

s−r Āas−r (k, k)XK
3−i,r (k) ds

+
∫ t

r

∑
l∈S

A∗(l)as−r (l, k)[as−rX
K
3−i,r (l) − as−r (l, k)XK

3−i,r (k)]ds

=: I1 + I2.

For the first integral, using (3.14), we get

0 ≤ 1
2 ā2(t−r)X

K
3−i,r (k) − 1

2 ā2(t−r)(k, k)XK
3−i,r (k) = I1 ≤ 1

2MK
3−i,r .

For the second integral, we obtain similarly

0 ≤ I2 ≤
∫ t

r

∑
l∈S

as−r (l, k)as−rX
K
3−i,r (l) ds

=
∫ t

r
ās−rX

K
3−i,r (k) ds

= 1

2
Ḡ∗

2(t−r)M
K
3−i,r ≤ 1

2
Ḡ∗

2(T0−r)M
K
3−i,r .
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Combining the estimates for I1 and I2, we get

|hi(k, t, r)| ≤ 1
2

(
Ḡ∗

2(t−T0)
+ 1

)
MK

3−i,r ≤ Ḡ∗
2(t−T0)

MK
3−i,r ,

and we get the bound for hi(k, t, r) for t sufficiently large. �

We have to introduce some notation and define a number of additional constants.
Define the event

C =
{ ∑

|k|≤L

XK
i,T0

(k) ≥ 1

2
MK

i,T0
for i = 1,2

}
.(3.16)

Since MK
i,T0

< ∞, i = 1,2, there exists an L > 0 such that

P[C] ≥ 1 − δ.(3.17)

LEMMA 3.6. There exists a T1 ≥ T0 such that for all t > T1,

Z
(1)
t ≥ c′Ḡ∗

2(t−T0)
MK

1,T0
MK

2,T0
on C ∩ F.

PROOF. In order to simplify the notation, let Z
(1)
t = Z

(1,1)
t + Z

(1,2)
t , where

Z
(1,1)
t := ∑

l∈S

∫ t

T0

as−T0X
K
1,T0

(l)Ā(as−T0X
K
2,T0

)(l) ds,

Z
(1,2)
t := ∑

l∈S

∫ t

T0

as−T0X
K
1,T0

(l)A∗(l)as−T0X
K
2,T0

(l) ds.

We start with showing that Z
(1,1)
t ≥ 0. To this end, using (3.14), we compute

Z
(1,1)
t = ∑

l∈S

∫ t

T0

XK
1,T0

(l)[aT
s−T0

Āas−T0]XK
2,T0

(l) ds

= 1

2

∑
l∈S

X̄K
1,T0

(l)
(
ā2(t−T0) − I

)
XK

2,T0
(l)

= 1

2

∑
l∈S

X̄K
1,T0

(l)ā2(t−T0)X
K
2,T0

(l) ≥ 0 on F,

since XK
1,T0

(k)XK
2,T0

(k) = 0 on F for all k ∈ S.

The bound for Z(1,2) follows similarly to Dawson and Perkins [5], page 1109.
Recall c from (1.20). For k, l ∈ S such that |k|, |l| ≤ L, let T (k, l) be large enough
such that

Ḡt (k, l)

Ḡ∗
t

≥ c

2
for all t ≥ T (k, l).
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Define

T1 = T0 + max|k|,|l|≤L
T (k, l).(3.18)

Then for any t ≥ T1, we have that on C

Z
(1,2)
t ≥ A∗

2

∑
k,l∈S

Ḡ2(t−T0)(k, l)XK
1,T0

(k)XK
2,T0

(l)

≥ A∗

2

( ∑
|k|,|l|≤L

XK
1,T0

(k)XK
2,T0

(l)

)
min|k|,|l|≤L

Ḡ2(t−T0)(k, l)

≥ A∗c
16

MK
1,T0

MK
2,T0

Ḡ∗
2(t−T0)

,

where the last inequality follows by (3.16) and (3.18). Recalling (3.7), we get that
on C

Z
(1,2)
t ≥ c′Ḡ∗

2(t−T0)
MK

1,T0
MK

2,T0
.

Since Z
(1,1)
T ≥ 0 on F , this finishes the proof of Lemma 3.6. �

From Lemmas 3.4 and 3.6, we get that on F ∩ C, Zt is bounded below by

Zt ≥ c′Ḡ∗
2(t−T0)

MK
1,T0

MK
2,T0

− Ḡ∗
2(t−T0)

2
Zt + Z̄

(3)
t ,(3.19)

where Z̄
(3)
t = Z

(3)
1,t + Z

(3)
2,t . Let α := 1/(1 + Ḡ∗

2(t−T0)
/2). From (3.19), we get that

on F ∩ C

Zt ≥ αc′Ḡ∗
2(t−T0)

MK
1,T0

MK
2,T0

+ αZ̄
(3)
t .(3.20)

Then [recall from (3.12) that Zt ≤ 〈MK
1,·〉t − 〈MK

1,·〉T0 on F ]

P[〈MK
1,·〉t − 〈MK

1,·〉T0 ≤ ε,F ∩ C]
= P[Zt ≤ ε, 〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C]

(3.21)
≤ P

[
αZ̄

(3)
t ≤ ε − αc′Ḡ∗

2(t−T0)
MK

1,T0
MK

2,T0
,

〈MK
1,·〉t − 〈MK

1,·〉T0 ≤ ε,F ∩ C
]
.

We assume that t is sufficiently large so that Ḡ∗
2(t−T0)

≥ 2, hence

1 ≤ αḠ∗
2(t−T0)

= 2Ḡ∗
2(t−T0)

2 + Ḡ∗
2(t−T0)

≤ 2.(3.22)
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By (3.22), (3.4) and (3.10), we get

P
[
αZ̄

(3)
t ≤ ε − αc′Ḡ∗

2(t−T0)
MK

1,T0
MK

2,T0
, 〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C

]

≤ P
[
αZ̄

(3)
t ≤ ε − αc′Ḡ∗

2(t−T0)
δ2, 〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C

] + 1 − 5δ

≤ P
[
αZ̄

(3)
t ≤ ε − c′δ2, 〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C

] + 1 − 5δ

= P
[
αZ̄

(3)
t ≤ −Rε, 〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C

] + 1 − 5δ

≤ R−2ε−2α2E
[(

Z̄
(3)
t

)21{〈MK
1,·〉t−〈MK

1,·〉T0≤ε}1F

] + 1 − 5δ.

Using Lemma 3.5, this inequality can be continued by

≤ R−2ε−1(K/2)2(
αḠ∗

2(t−T0)

)2 + 1 − 5δ

≤ K2

R2ε
+ 1 − 5δ(3.23)

≤ 1 − 4δ.

Combining (3.21), (3.23), (3.2) and (3.17), we get

P[〈MK
1,·〉t − 〈MK

1,·〉T0 ≤ ε]
≤ P[〈MK

1,·〉t − 〈MK
1,·〉T0 ≤ ε,F ∩ C] + P[Fc] + P[Cc]

≤ 1 − 4δ + δ + δ = 1 − 2δ.

This is a contradiction to (3.5) and hence finishes the proof of Theorem 2.
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