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Abstract

We consider two spatial branching models on R
d � branching Brownian motion with a

branching law in the domain of normal attraction of a �� � �� stable law� � � � � �� and the
corresponding high density limit measure valued di�usion�

The longtime behaviour of both models depends highly on � and d�
We show that for d � 	�� the only invariant measure is ��� the unit mass on the empty

con
guration� Furthermore we give a precise condition for convergence towards ���
For d � 	�� it is known that there exists a family ���� � � ������ of non�trivial invariant

measures� We show that every invariant measure is a convex combination of the ��� Both
results have been known before only under an additional 
nite mean assumption�

For the critical dimension d  	�� we show that both models display the phenomenon of
di�usive clustering� This means that clusters grow spatially on a random scale� We give a
precise description of the clusters via multiple scale analysis�

Our methods rely mainly on studying sub� and supersolutions of the reaction di�usion
equation �u��t� �

�
�u� u���  ��
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INFINITE VARIANCE BRANCHING MODELS �

� Introduction and main results

��� Survey

Branching Brownian motion �BBM� is an �in�nite� particle system in which particles perform
independent Brownian motions and split at random times into a random number of o�spring
particles� We consider the process ��t�t�� which will be either branching Brownian motion on
R
d with o�spring probability generating function f�z� � z � �

� �� � z���� � 
 � � � �� or its high
density limit measure valued di�usion� the so�called super Brownian motion �SBM�� �Note that the
probability distribution generated by f is in the normal domain of attraction of a stable law with
index ���� In particular� for � � � this law does not have variance�� In the SBM the transport of
mass is governed by the �deterministic� heat �ow while the local �intensity of matter� �uctuates
randomly�
A path�wise construction of these processes in terms of excursions of certain random walks and

L�evy processes respectively can be found in a recent paper by Le Gall and Le Jan ������� See also
Gorostiza et al� ������ for a corresponding multi�type model�
It is well known that ��� the unit mass on the empty con�guration� is the only invariant measure

with �nite intensity if d � ���� One aim of this paper is to show that the �nite intensity assumption
can be dropped� hence �� is the only invariant measure for ��t� if d � ���� In the case of �nite
variance branching �� � �� this has been done before by Bramson� Cox and Greven ������� Their
approach �as ours� is based on the study of sub� and supersolutions u�t� x� f�� x � R

d � t � 
� to
the reaction di�usion equation

��t � �
�
��u� u��� � 
� �����

where �t � d�dt and � denotes the Laplacian in Rd � While most of their techniques work also in
our setting� part of the argument of Bramson� Cox and Greven ������ relies on a second moment
estimate and had to be replaced to cope with � � ��
In the high dimensional case d � ��� it is known that there exists a family ���� 	 � �
����

of extremal invariant �and translation invariant� measures for ��t�� All invariant measures with
�nite intensity can be represented as a convex combination of these ��� We show in this paper that
the �nite intensity assumption can be dropped� For the case � � � this has been shown before by
Bramson� Cox and Greven ������
The other main point of this paper is to investigate closer the clustering in the critical dimension

d � ���� We show that the so�called di�usive clustering occurs� This phenomenon has �rst been
investigated for the voter model by Cox and Gri�eath ����	�� Roughly speaking di�usive clustering
means that clusters grow spatially at a random order of magnitude� This phenomenon has been
observed for a lot of interacting particle systems and related models such as the voter model� linearly
interacting di�usions� critical binary branching Brownian motion� etc� A detailed treatment can
be found in Klenke ����	� and Klenke ������ All these models have in common that the local
random �uctuations �given� e�g�� by the branching law or the resampling mechanism� have �nite
variances and that the critical dimension �in which di�usive clustering occurs� is d � ��
This is however the �rst case in which di�usive clustering is observed in absence of a second

moment� In the �nite variance models it turned out that the growth of the cluster height is
dominated by the Green function

G�t� �

Z t

�

ps�
� 
� ds�

where pt��� �� is the �symmetric� interaction kernel of the model� Of course� here pt is the heat
kernel� In the absence of a second moment we show that the cluster growth is now governed by
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the quantity

G��t� �

�Z t

�

ps�
� 
�
� ds

����




This object naturally arises in the investigation of Kallenberg�s backwards tree of the clusters �see
Gorostiza and Wakolbinger �������� In this paper we do not make explicit use of the backwards
tree but rely on pde methods� the connection being that ����� is Kolmogorov�s backwards equation
for the Laplace functionals of ��t��

��� The Models

We give a short description of the models considered in this paper� For more details we refer the
reader to Dawson ������� Unfortunately we have to introduce a lot of notation �rst�

Basic De�nitions for Random Measures

Let E be a locally compact polish space� By B�E� we denote the Borel ���eld on E� By Cb�E�
and Cc�E� we denote the spaces of continuous real valued functions on E that are bounded resp�
have compact support� Further let C�

c � ff � Cc � f � 
g and C��
c � ff � C�

c � f �� 
g and
de�ne C�

b and C
��
b analogously�

A measure � on B�E� is called locally �nite if ��K� �� for all compact sets K � E� Let

M�E� � flocally �nite measures on Eg �����

andMf�E� � f� � M�E� � ��E� ��g�
For � � M�E� and f � E 	 R measurable and ��integrable we de�ne h�� fi �� R f d�� M�E�

is a polish space with the vague topology� de�ned by �n 	 � i� h�n� fi 	 h�� fi for all f � Cc�E��
The spaceM��M�E�� of probability measures onM�E�� equipped with the weak topology� is also
polish �see� e�g�� Kallenberg �������� For weak convergence of probability measures we use the
symbol ��
��
The space of �non�negative� integer valued measures � on B�E� will be denoted by

N �E� � f� � M�E� � ��A� � f
� �� � 
 
 
 ��g �A � B�E�g
 �����

For m � M�Rd � we denote by H�m� � M��N �Rd�� the distribution of the Poisson point process
on Rd with intensity measure m� i�e�� for f � C�

c �R
d ��Z

H�m��d��e�h��fi � exp��hm� �� e�f i�
 �����

We use the notation L�X � for the distribution of a random variable X � Let �Xt�t�� be a Markov
process with values in E and x � E or Q � M��E�� By Lx��Xt�t��� and LQ��Xt�t��� we denote
the distributions of �Xt�t�� with Lx�X�� � �x and LQ�X�� � Q� If �Xt� is c�adl�ag� convergence of
paths will be understood in the Skorohod topology� Convergence of �nite dimensional marginals
will be indicated by �fdd��

�� � ���Branching Brownian Motion

Let 
 � � � � and let �pk�k�������� be the probability distribution on N� with p�g�f� f�z� �
z � �

� ��� z����� z � �
� ��� i�e��

pk �

���������
��� if k � 
�

��� ���� if k � ��

�

�
����k

�
� � �

k

�
if k � �� �� 
 
 


�����
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Note that �pk� is critical�that is
P

kpk � �� and is in the normal domain of attraction of a stable
law on �
��� with index �� � ��� In particular� for � � � the law �pk� has in�nite variance�
We will consider a particle performing a Brownian motion on R

d and with an exponential
lifetime with mean ���b � 
� At the time of death the particle produces an o�spring of k particles
with probability pk� The o�spring behave as k independent copies of the one�particle system
started at the parent particle�s �nal position� If we start the process with more than one particle
at time 
� we assume that all particles are independent�
The process

t�A� � �fparticles in Ag� A � B�Rd�� t � 
� ���	�

will be called the branching Brownian motion on R
d with parameters � � � and b� abbreviated

BBM�d� � � �� b��

�� � ���Super Brownian Motion

Next we consider the short lifetime high density limit of BBM�d� � � �� b�� Let � � Mf�R
d �

and �N � Nf�R
d �� N � N� such that N���N 	 �� as N 	 �� For N � N let �Nt �t�� be

BBM�d� ���� bN�� with initial state N� � �N � It is well known that there exists a c�adl�ag Markov
process ��t�t�� with values inMf�R

d � such that

L����t�t��� � w � lim
N��

L�N
�
�
�

N
Nt �t��

�
����

�see Dawson ������� Section ������
The process ��t�t�� will be called super Brownian motion on R

d with parameters � � � and b�
abbreviated SBM�d� � � �� b��
For � � M�Rd� we can de�ne ��t�t�� with initial con�guration �� � � as the increasing limit

of ��nt �t�� with initial con�gurations �
n � Mf�R

d �� n � N� such that �n � �� It is known that
SBM�d� � � �� b� takes values in M�Rd� if we impose a regularity condition on the initial state
�� e�g�� assume h�� �� � k � k���p�i � � for some p � d��� The same condition also assures that
t � N �Rd� a�s� for all t � 
�

Log�Laplace equation

Let f � C�
b �R

d�� A prominent role in this paper is played by the solution u�t� x� f�� x � Rd � t � 
�
of the Cauchy problem

L�u�t� x� f� � 
� x � Rd � t � 
�
u�
� x� f� � f�x�� x � Rd �

�����

where

L�u�t� x� f� � ��t � �
�
��u�t� x� f� � bu�t� x� f����
 �����

Since ����� is time�homogeneous� u has the �non�linear� semigroup property

u�t� s� x� f� � u�t� x�u�s� � � f��� x � Rd � s� t � 

 ����
�

Note that for � � 
 the following scaling relation holds�

u�t� x� f� � ����u��t� ����x� �����f������ � ��� x � Rd � t � 

 ������

The reaction�di�usion equation ����� is linked to our branching processes by the equations �see�
e�g�� Dawson �������

E�x �exp��ht� fi�� � �� u�t� x� �� e�f �� ������

E�x �exp��h�t� fi�� � exp��u�t� x� f��
 ������
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��� Invariant Laws

Recall that pt�x� � ���t�
�d�� exp��kxk���t� is the heat kernel on Rd � De�ne G��t� by

G��t� �

�Z t

�

ps�
�
� ds

����


 ������

For d � N de�ne � � ����� R
d 	 �
��� by

��t� x� � pt�x��G��t�
 ������

It will turn out that �in the particle language� G��t� measures the concentration of particles around
a certain point �say the origin�� given that there is a particle� It is the typical concentration of
particles or average �cluster height�� On the other hand pt�x� is the expected intensity of particles
at the origin if we start in �x� Consequently� the function ��t� x� measures the probability of seeing
a particle at the origin at time t � � if we start with one �particle� at time 
 at site x � Rd �

Low dimension

Recall that ��t� is either BBM�d� � � �� b� or SBM�d� � � �� b��

Theorem � Assume d � ���� Then the following hold�

�i� L��t� t��
�
 �� if and only if

L�h��� ��r� ��i� �
 ��� r 	�
 ����	�

�ii� If condition ����	� does not hold� then �t is unstable� i�e� for any f � C��
c �Rd � the sequence

h�t� fi is stochastically unbounded�

�iii� If L�h��� ��r� ��i� �
 ��� r 	 �� then �t explodes� i�e� for any f � C��
c �Rd � almost surely

h�t� fi 	 �� as t	��

Corollary ��� If d � ���� then the only invariant measure for �t is ��� �

In order to check the conditions of Theorem � it is useful to note that ��t� x� can be bounded from
above and below by the function � � ����� R

d 	 �
���� de�ned by

��t� x� �

���
td������pt�x� if � � ��d

�log t�����pt�x� if � � ��d
pt�x� if � � ��d


�����

More precisely� there exist c� C � 
 �depending only on d and �� such that for t � � and x � Rd

c��t� x� � ��t� x� � C��t� x�
 ������

�This is immediate from the fact that pt�
� � ���t�
�d���� Hence it su ces to verify the conditions

of Theorem � for � instead of ��
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High dimension

Let I be the set of invariant measures for ��t�� by Ie � I we denote its extremal elements� It is
well known �see Gorostiza and Wakolbinger ������� Theorem �� that there exists a one parameter
family f��� 	 � �
���g � Ie with the following properties� Each �� is translation invariant� ergodic
and has intensity 	� i�e��

R
���dm�hm� fi � 	h�� fi for f � C�

c �R
d �� Further for L���� translation

invariant and ergodic with E�h��� fi� � 	h�� fi�

L��t� t��
�
 ��


For any � � I with ���nite intensity measure there exists a unique probability measure F� on
�
��� such that

� �

Z
��F��d	�
 ������

Our point is to drop the assumption of the ���niteness on � to allow for a representation as in
�������

Theorem � Let d � ��� and let ��t� either BBM�d� � � �� b� or SBM�d� � � �� b�� Then the
following holds�

Ie � f��� 	 � �
���g and for any � � I there exists a unique probability distribution F� on
�
��� such that � �

R
��F��d	��

The crucial step to prove Theorem � is the following proposition�

Proposition ��� Any invariant measure is translation invariant�

��� Critical dimension� Di�usive clustering

Our aim is to give a precise description of the clustering in the critical dimension d � ���� Hence
we will assume � � ��d� For simplicity of notation we will also assume b � � in the following
discussion�
Proceeding as in Klenke ����� we introduce the following concepts for the description of the

heights of the clusters and their expansions in space�

��� High density rescaling
For time t � � we de�ne e�t � e��

t �� �log t�
�����t ����
�

with �recall that � is the d�dimensional Lebesgue measure�

L���� �Mt ��

� H��log t������ if �t is BBM�
��log t������ if �t is SBM


������

��� Spatial rescaling
For ��t� BBM�d� � � �� �� or SBM�d� � � �� �� let I � �
� �� respectively I � ���� ��� We �x

� � I and de�ne � e��t � by e��t �� S��t e�t� � � I� ������

where
S��t �M�Rd�	M�Rd�� ���� �	 t��d����t��� ��


That is� for B � B�Rd� we set e��t �B� � t��d�� e�t�t���B�� As above we let e�t � e��
t �
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Remark� Since we intend to take the limit t 	 �� it would not make sense to allow � � 


for BBM� Due to the particle structure in this case we would get PMt �e�t �B� � 
� t���	 � for all
bounded sets B � B�Rd�� This leads us to the di�erent choices of I �
We introduce the total mass process �Zt�t�� of SBM�d� � � �� �� which is the �di�usion limit�

of Galton�Watson processes with o�spring probabilities de�ned in ����� above� �Zt� is a process
with independent increments which can be characterized by its log�Laplace transform

v�t�K� 	� � � logEK �exp��	Zt�� ������

that is the unique solution of

v�
�K� 	� � 	K�

�tv�t�K� 	� � �v�t�K� 	���� 

������

The solution can be given explicitly�

v�t�K� 	� � ��t� �K	�������� 
 ������

Let c� � ����� � �������� and recall that � is the Lebesgue measure�

Theorem 	 For ��t� BBM�d� � � ��d� �� or SBM�d� � � ��d� �� and � � I the following holds�

LMt � e��t � t��
�
 L��Zc������ � ��
 ����	�

Multiple Scale Analysis

So far we have considered our rescaled process e�� at one scale �� A natural task is to investigate
the limit behaviour of � e���

t � 
 
 
 � e��nt � for ��� 
 
 
 � �n � I � In order to learn more about the spatial
structure of the clusters� we might also wish to choose di�erent points of observation x�t � 
 
 
 � x

n
t �

R
d � Theorem � indicates that the distances kxet � xft k� e �� f � of these points should grow in

t on an algebraic scale �e�f � I � Note that a consistent choice of the �e�f implies that �
�e�f is

an ultra�metric on f�� 
 
 
 � ng� Hence we may assume w�l�o�g� that the points of observation are
indexed by a �nite �rooted� tree T and that �e�f � A�e � f�� where

A � T �	 I

is a strictly decreasing map�
To explain this a bit� note that T carries a natural partial ordering �� where e � f i� e is an

ancestor of f � i�e�� if e is closer to the root �denoted by �� than f � Hence e � f is the greatest
common ancestor of e and f �
The pair L � �T� A� will be called amultiple space scale� We will assume thatX � �xet � e � T� t � 
�

is a family of points xet � Rd such that

kxet � xft k � tA�e�f���� as t	�


As usual� at � bt means �log at���log bt�
t���	 �� We refer to X as to be L�spaced� Our aim is to

study the asymptotics of the common distribution of �recall S from �������

�SA�e��tTxet e�t�e�T as t	��

where Tz �M�Rd�	M�Rd� is the translation by z� �Tz����� � ��z � ���
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We give a heuristic motivation for the next de�nition� Consider the simplest case T � f�� e� fg�
e � f � �� Since Brownian motion has range t���� the common history of the space�time points
�t� xet �� and �t� x

f
t � ends at time t � tA�e�f�� After that time the histories of these points develop

independently� In fact� asymptotically the common history of �t� xet � and �t� x
f
t � is contained ine�t�tA�e�f��� ���tA�e�f���� tA�e�f����d�� This� together with Theorem �� suggests that the intensity

of SA�e��tTxet e�t and SA�f��tTxft e�t should consist of Zc����A�e�f�� plus two independent increments�

To be precise� let �Ze
t � e � T�t�� be the following Markov process on �
���T� Each �Ze

t �t�� is
a �� � �� continuous state branching �di�usion� introduced in ������� For e� f � T with e �� f we

let Ze
t � Zf

t for t � �
� � � A�e � f��� For t � � � A�e � f� the evolutions of Ze
t and Z

f
t shall be

independent�

Theorem 
 �Multiple Scale�
Let ��t� be BBM�d� � � ��d� �� or SBM�d� � � ��d� �� and I � �
� ��� respectively I � ���� ���
Then the following holds�

LMt

h
�SA�e��tTxet e�t�e�Ti t��

�
 L
�	
Ze
c����A�e�� � �



e�T

�



By taking a linear tree T we obtain the following corollary�

Corollary ��	

LMt

h
� e��t �B����Ii t��

�

fdd

L�
h
��B� � �Zc���������I

i
� B � B�Rd�
 �

��� Outline

The rest of the paper is organized as follows� In Section � we give upper and lower bounds of
u�t� x� f� in terms of the function ��t� x� in Proposition ��	� This is the key for the proof of
Theorem � and � in Section � and �� In Section � we give better bounds for the special situation
� � ��d that serve to prove Proposition ���� A coupling technique will be employed to infer
Theorem ��

� Proof for the low dimensions

In this section we give some lemmas dealing with sub� and supersolutions to the equation L�u � 
�
With the aid of these lemmas we prove Theorem �� Some of the lemmas will be used in Section �
to prove the high�dimensional results�
The main tool for the investigation is a maximum principle for the non�linear parabolic di�er�

ential operator L� � We state the following lemma without proof and refer the reader to Protter
and Weinberger ���	�� Chapter ��� �In fact� Protter and Weinberger only deal with the case of
a bounded domain� Our lemma follows by approximation arguments��

Lemma ��� �Maximum principle� Let L � Lt�H be the semi�parabolic operator on R
d de�ned

by

Lu�t� x� � �tu�t� x�� �
�
�u�t� x� �H�t� u�t� x���

where H � �
���  �
��� 	 �
��� is continuous and nondecreasing in u� Let f� g � C�
c �R

d ��
f � g� and T � 
� Let u�t� x� f� and u�t� x� g� be sub� and supersolutions to Lu � 
 with initial
conditions f � respectively g� that is�

u�
� x� f� � f�x�� u�
� x� g� � g�x�� x � Rd �
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and
Lu�t� x� f� � 
� Lu�t� x� g� � 
� x � Rd � t � �
� T �


We also assume that u and u are bounded and vanishing at in�nity �as functions of x for any t��
Then

u�t� x� f� � u�t� x� g�� x � Rd � t � �
� T �

�

To warm up we give two simple applications of the maximum principle� Recall that u�t� x� f�
denotes the solution of the Cauchy problem ������

Lemma ��� Let f� g � C�
c �R

d � and let c � �� Then

u�t� x� f � g� � u�t� x� f� � u�t� x� g�� x � Rd � t � 
 �����

and
u�t� x� cf� � c u�t� x� f�� x � Rd � t � 

 �����

Furthermore� if f � g then

u�t� x� f� � u�t� x� g�� x � Rd � t � 

 �����

Proof Check that L��u�t� x� f� � u�t� x� g�� � 
 and L��c u�t� x� f�� � 
� The last inequality is
trivial� �

Lemma ��	 Let f � C�
c �R

d � and let v�t� x� f� � �pt � f��x� the solution of the heat equation
��t � �

���v � 
� v�
� � � f� � f � Then the following inequality holds�

�� � b� kfk�� t�����v�t� x� f� � u�t� x� f� � v�t� x� f�� x � Rd � t � 

 �����

Proof Let U�t� x�K� � U�t�K�� K � 
� the solution of L�U � 
� U�
� � �K� � K� The explicit
solution of this equation is

U�t�K� � K�� � bK��t����� 


By the maximum principle� for K � kfk��

L�u�t� x� f� � �tu� �
�
�u� bU�u �����

� �tu� �
�
�u� �bK���� � bK��t���u


Hence eL�u � 
� where eL� � eL��t is de�ned by
eL��t!u � �t!u� �

�
�!u� �bK���� � bK��t���!u


Let !u be the solution the eL��t!u � 
� The maximum principle implies u�t� x� f� � !u�t� x� f�� x � Rd �
t � 
� Note that !u can be represented as

!u�t� x� f� � v�t� x� f� � exp
�
�
Z t

�

bK��� � bK��s��� ds

�
���	�

� v�t� x� f��� � bK��t����� 


Since the maximum principle implies u�t� x� f� � v�t� x� f�� x � R
d � t � 
� the assertion is proved�

�
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Let A � 
� recall G��t� from ������� and de�ne u�t� x� by

u�t� x� �

�����������
At�d��G��t�

�� exp
	
� �

�
kxk�

�t



� � � ��d

At�d��G��t�
�� exp

	
����G��t�

��� kxk
�

�t



� � � ��d

At�d�� exp
	
� �

�
kxk�

�t



� � � ��d


����

The de�nition of u for the case � � ��d might look a little strange at �rst glance� Clearly for t

large enough� u�t� x� � At�d��G��t�
�� exp

	
� �

�
kxk�

�t



� However we will be able to show that u is

a supersolution only for the de�nition given in �����

Lemma ��
 �Super�solution� Assume that � � ��d� There exists t� � t���� d� � 
 such that
for A large enough and t � t��

L�u�t� x� � 
� x � Rd 
 �����

Proof We do the proof separately for critical and low dimension�
Critical dimension �� � ��d�� Note that

G��t� � ����
�d���log t���� �����

and that G�
��t� �

d
dtG��t� � ��t log t�

��G��t� �
�
�	

d
�tG��t�

��� � Hence a short calculation shows
that for t � exp�� � ����

L�u�t� x� �
u�t� x�

tG��t��

�
� �
�

	
� �

�

��



�
	
��

	
� �

�

��



G��t�

��

kxk�
�t

����
�

�bA� exp

�
�� ���G��t�

��
� kxk�
�t

��
� u�t� x�

tG��t��

�
� �
�

	
� �

�

��



�
�

�

kxk�
�t

� bA� exp

�
�� kxk

�

�t

��



Check separately that this is nonnegative for kxk���t � ���������� and for kxk���t � ����������
and A � exp������b����

Low dimension �� � ��d�� Note that

G��t� � ����
�d��

�
�� �d

�

�����

�
	
t���d�� � �


���
������

and that

G�
��t� �

d

dt
G��t� � �����d��

�
�� �d

�

�����

� �
�

�
�� �d

�

�	
t���d�� � �


������

t��d��

�

�
�

�
� d

�

�
��� t���d����� �G��t��t

�
�
�

�
� d

�
G��t��t for t � �������d���


Hence for t � �������d����

L�u�t� x� � u�t� x�

�
� d

�t
� G�

��t�

G��t�
�
kxk�
�t�

� bA�t��d��G��t�
�� exp

�
�� �
�

kxk�
�t

��
������

� u�t� x�
�

t

�
� �
�
�
kxk�
�t

� bA������d����� �d��� exp

�
�� �
�

kxk�
�t

��
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Check separately that this expression is nonnegative for kxk���t � ��� and for kxk���t � ��� and

A � ���� exp�����

����d����� �d������b�������



�

We continue by giving sub�solutions u� Recall that pt�x� is the heat kernel� We de�ne for
a � �
� ��b������ �

u�t� x� � a pt�x�G��t�
��
 ������

Lemma ��� �Sub�solution� In any dimension for t � ��

L�u�t� x� � 
� x � Rd 
 ������

Proof We calculate

L�u�t� x� � u�t� x�G��t�
��

�
ba�pt�x�

� � �
�
pt�
�

�

�
� 
� ������

where the inequality holds since a � ��b����� � �

Recall � from �������

Proposition ��� Let d � N and 
 � � � �� Let f � C��
c �Rd�� and let u�t� x� f� the solution of

L�u � 
 with u�
� � � f� � f � Then there exist constants a� A� t� � 
 such that

a��t��� x� � u�t� x� f� � A���t� x�� x � Rd � t � t�
 ����	�

Proof Upper bound� low and critical dimension� Assume � � ��d� Let u and t� as in Lemma ���
with A� �� A in the notation of ����� large enough such that f�x� � u�t�� x�� x � R

d � By the
maximum principle�

u�t� x� f� � u�t� t�� x�� x � Rd � t � 


Note that there exist constants A�C � 
 such that for t � t� �note that G��t�

�� � �
� if � � ��d��

A���t� x� � C����t � t��� x� � u�t� t�� x�


Upper bound� high dimension� Assume � � ��d� Note that by ������ there exist constants
c� c� � 
 such that

A���t� x� � Ac�p�t�x� � Acpt���x�� for t � �

Choose A large enough such that Acp��x� � f�x�
 Note that

L��Acpt�x�� � b�Acpt�x��
��� � 



Hence by the maximum principle Acpt���x� � u�t� x� f�� t � 
�
Lower bound� Note that there exists a� � 
 such that for u of ������ with a� instead of a

u��� x� f� � u��� x�� x � Rd 

Arguing as above� another application of the maximum principle yields that for some c � 
� a � 
�
u of ������ now again with a� and for t � ��

u�t� x� f� � u�t� �� x� � c��t� �� x� � a��t��� x�
 �����

�
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With Proposition ��	 in hand we are able to prove the extinction and explosion in Theorem �� It
is� however� more subtle to show instability� Here we need better lower bounds for u that re�ect
the clustering in low dimensions� Roughly speaking the picture is as follows� Let � � 
 and
B � B�Rd� bounded� For t large with high probability there is no particle in B� t�B� � 
� With
a small probability� t�B� � ��� and there is no intermediate regime� Hence for large t with
overwhelming probability� e�
�t�B� is either 
 or close to � implying that e�
�t�B� � e��t�B�� This
suggests that for given � � 
 and indicator function f � �IB for t � 
 large enough we should have
u�t� x� �f� � u�t� x� f�� �Recall that u�t� x� f� is the solution of L�u � 
 with u�
� x� f� � f�x���
This should carry over to f � C�

c �R
d � by approximation�

For our purpose of showing instability in Theorem � it will be su cient to give a lower bound
for u�t� x� �f��

Lemma �� Let � � ��d and f � C��
c �Rd �� There exists a constant cf � 
 such that for � � 


and t large enough�
u�t� x� �f� � cf��t��� x�
 ������

Proof Note that there exists a constant c�f � �
� �� such that

c�f p� � �p� � f�


Hence by Lemma ��� and Lemma ��� �and the semigroup property of u ����
���

u�t� x� �f� � u
	
t� �� x�u��� � � �f�



������

� u
	
t� �� x� �� � �b�� kfk������� � �p� � f�



� c�f u�t� �� x� � p���

where c�f �� c�f ����b� � kfk������� � 
� Now we use two di�erent arguments for low and critical
dimension�

Critical dimension� Assume � � ��d� Here we make use of the selfsimilarity of SBM�d� � �
��d� ��� Let a � �
� �b������� and let u be the the corresponding sub�solution according to
Lemma ���� that is�

u�x� t� � �����d��a � t�d���log t����� exp��kxk���t�

Abbreviating � � exp��a�������� we get by the scaling property ������ that

u�t� x� �p����� � u�t� x� �������a�log ����������p���
������ ����
�

� u�t� x� ����u��� �������
� ����u��t� ����x�u��� ���


By time homogeneity� also u�s� � � � � is a subsolution for all s � 
� Hence u has the property
u�t� s� x� � u�t� x�u�s� � ��� s� t � 
� x � Rd 
 ������

We can thus continue ����
� by

u�t� x� �p����� � ����u���t� ��� ����x� ������

� �log�t� �� � log ������ a pt���x�

� �log�t� �� � log ������ a��d�� pt�x� for t � �
� ��du�t� x�� for t � �� ��
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�Note that for t � �� �� log�t� �� � log��� � log��t� ���t� ��� � � log t�� Combining ������ and
������ we get that there exist c�f � c

�
f � and cf � 
 such that for � � 
 and t large enough

u�t� x� �f� � c�fu�t� �� x� � c�fu�t��� x� ������

� cf��t��� x�


Low dimension� Assume � � ��d� We make implicit use of the fact that SBM�d� ����d� �� has
a density in the low dimensions� Recall from ������ that u is the Laplace transform of SBM� The
existence of a density of SBM is known to be equivalent to the existence of a smooth solution u to
L�u � 
 with a delta distribution �� as initial condition �see Fleischmann �������� More precisely�
u�t� x� ���� t � 
� x � Rd � is the solution of L�u � 
 such that for h � C�

c �R
d ��

lim
t��

Z
u�t� x� ���h�x� dx � h�
�


Brezis� Peletier and Terman ����	� show in their appendix that there exists t� � 
 such that

u�t� x� ��� � �
�
pt�x�� x � Rd � 
 � t � t�


Note that the maximum principle implies

u�t� x� ��� � pt�x�� x � Rd � t � 


Hence by Lemma ��� for t� s � t� �note that k ��pt�k� � �

� ���t��
�d����

u�t� x� ps���� � u�t� s� x� ��� ������

� u�t� s� t�� x�u�t�� � � ����
� u

	
t� s� t�� x�

�

�
pt����



� �

�

	
� � ���b��t� s����t��

��d��

����

pt�s�x�


Let c�f �
�
� �� � �

��b����t��
��d������� � By the scaling property ������ and by ������ there exists

cf � 
 such that for t � ���������d����

u�t� x� �f� � c�fu�t� �� x� �p����� ������

� c�f t
����u

�
�� �

t
� t����x � t����t�d��p��t���

�
� c�f t

����u

�
�� �

t
� t����x� p��t���

�
� c�f c

�
f t

����p����t�t
����x�

� cf��t��� x�


�

Proof of Theorem �

We do the proof only for ��t� � ��t� SBM�d� � � �� b�� An easy application of Jensen�s inequality
in ������ and ������ then yields the claim for BBM�d� � � �� b��
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To prove part �i� note that L��t� t��
�
 �� is equivalent to

lim inf
t��

E�exp��h�t� fi�� � �� f � C��
c �Rd �
 ����	�

However� for such f � by Proposition ��	� there exist a�A � 
 such that

lim inf
t��

E�exp��Ah��� ��t� ��i�� � lim inf
t��

E�exp��h��� u�t� � � f�i�� �����

� lim inf
t��

E�exp��h�t� fi��
� lim inf

t��
E�exp��ah��� ��t� ��i��


These expressions are equal to � if �and only if�

h��� ��t� ��i t���	 
 stochastically
 ������

This proves part �i��
Now assume that ������ does not hold� We have to show that h�t� fi is stochastically unbounded�

This is the case if and only if

lim sup

��

lim inf
t��

E�exp��h�t� �fi�� � �
 ������

By Lemma �� there exists a constant cf � 
 such that the l�h�s� of ������ is dominated by

lim inf
t��

E�exp��cf h��� ��t� ��i��� ����
�

which is strictly smaller than � by assumption� Hence �t is unstable�
Assume that the assumption of part �iii� holds� i�e�� L�h��� ��r� ��i� �
 ��� The assertion that

�t explodes is equivalent to
lim sup
t��

E�exp��h�t� fi�� � 
� ������

for all f � C��
c �Rd �� This however can be shown with the aid of Proposition ��	 as in the proof

of part �i�� �

� Proof for the high dimensions

Bramson� Cox and Greven ����� give a proof for Theorem � in the case � � �� Most of their
proof works without any changes for all � � �
� ��� We do not repeat their entire proof here but
only give an outline of their strategy and proofs of the lemmas that needed �minor� modi�cations�
Bramson� Cox and Greven ����� use Proposition ��	 to show that if �t is stable� then h��� pt���i

is stochastically bounded �as t 	 ��� They infer with the aid of Lemma ��� below that if L����
is invariant� then for f � C�

c �R
d � and z � Rd �

E�exp��h�t� f�z � ��i���E�exp��h�t� fi�� t���	 

 �����

Since the left�hand side of ����� does not depend on t �by the assumption that L���� is an invariant
law�� we know that L��t� is translation invariant� hence Proposition ��� holds�
A standard argument now yields the claim of Theorem ��
We only give the proof of Lemma ��� since it is here where small changes have to be made to

cover the case � � ��
For � � 
 let B��� � fx � Rd � kxk � �g denote the ball with radius � centered at the origin�
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Lemma 	�� Let � � 
 and 
 � M � ����� Let f � C��
c �Rd�� For t large enough and all

x�� x� � B��t� with kx� � x�k �M �

u�t� x�� f� � exp
�
�
p
M���

�
u�t� x�� f�
 �����

Proof Step �� We show that for x � Rd and t � 
�

e�����v
	
�t� x�u���� ��t� � � f�



� u�t� x� f� � v

	
�t� x�u���� ��t� � � f�



� �����

where v is de�ned as in Lemma ���� The right�hand inequality follows immediately from the
maximum principle� For the other inequality we proceed as follows�
Fix t � 
� De�ne the linear operator K� for smooth functions w�s� x� by

K�w � �sw � �
�
�w �

�

�t
w


By ����� for s � t���
K�u�s� x� f� � L�u�s� x� f�


Let w � w�s� x� f� be the solution of the Cauchy problem K�w � 
� w�
� � � f� � f � By the
maximum principle �applied to K��� w��t� x�u��� � ��t� � � f�� � u�t� x� f�� Note that �as in ���	��
w can be represented as

w��t� x�u��� � ��t� � � f�� � v��t� x�u���� ��t� � � f�� exp

�
Z �t

�

�

�
ds

�
�����

� v��t� x�u���� ��t� � � f��e����� 


This however yields ������
Step �� Finally we show the assertion of the lemma� Let x � B��t�� We write

v��t� x�u���� ��t� � � f�� � I��x� � I��x� �����

��

Z
B��
t�

p�t�z� x�u���� ��t� z� f� dz �

Z
B��
t�c

p�t�z� x�u���� ��t� z� f� dz


An easy estimate using kx � zk � ��t for x � B��t� and z � B���t�c and Lemma ��� yield for t
large enough�

I��x� �
Z
B��
t�c

dz p�t�x� z�

Z
Rd

dy p�����t�z� y�f�y� ���	�

� ����t��d�� exp�����t���kfk� � exp�����t�kfk�


We obtain u�t� x� f� � exp�����t�kfk� for t large by a similar estimate using the other inequality
in Lemma ���� Hence

I��x� � exp����t�u�t� x� f� ����

Let x�� x� � B��t� with kx� � x�k �M � For z � B���t� clearly

kz � x�k� � kz � x�k� � kx� � x�k� � �hz� x� � x�i
� kx� � x�k � kx� � x�k� �kzk � kx� � x�k
� M � ��t� � � ��t �M � �
�M
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Hence p�t�z� x�� � exp���M���p�t�z� x��� Together with ����� we get �recall � �
p
�M�

I��x�� � exp���M���

Z
B��
t�

p�t�z� x��u���� ��t� z� f�� dz �����

� exp���M���v��t� x��u���� ��t� � � f�� �����

� exp����� � ��M���u�t� x�� f�

� exp�����u�t� x�� f�


Together with ���� this implies for t large

u�t� x�� f� � exp������u�t� x�� f�

�

� Proof for the di�usive clustering

In order to show the weak convergence statement ����	� of Theorem � we will show convergence
of the Laplace transforms in the case of SBM� This is the content of Proposition ��� below� The
case of BBM will follow by a comparison argument using the embedded particle system and the
law of large numbers �here � � 
 is needed��
The log�Laplace transform of the l�h�s� of ����	� for a test function f � C�

c �R
d � is �recall ������

and ����
� � �������

� logE�log t������exp��he��t � fi�� � � logE�log t������exp��he�t� t��d��f�t����� �i�� �����

� � logE�log t������exp��h�t� �log t�����t��d��f�t����� �i��
� h�log t���� � �� u�t� � � �log t�����t��d��f�t����� ��i


Using the scaling relation ������ �with � � t�� this quantity equals �recall � � ��d�

� h�log t���� � �� t��d��u�t���� t���� � � �log t�����f�i �����

� h�log t���� � �� u�t���� � � �log t�����f�i
� ��� ������

D
�log t����� � �� u�t�� � � �log t��������� �����f�

E
�

where we put t� � t���� We have to show that this expression converges as t� 	 � to �recall
������� ������ and that c� � ����� � ���������

� logE��exp��Zc������h�� fi�� � ��c���� �� � h�� fi������� �����

� ��� �������c� � h�� ��� �����fi������� 


Comparing this with ������ it is clearly enough to handle the case � � 
 This is the content of the
following proposition�

Proposition 
�� Assume � � ��d and let u be the solution of ������ For f � C��
c �Rd �� x � R

d �
�� � � � �� and s � 
 the following hold�

�i� lim
t��

�t log t����u�t� s� t���x� �log t�����f� � �����c� � h�� fi��������e�kxk
����

�ii� lim
t��

h�log t���� � �� u�t� � � �log t�����f�i � ��c� � h�� fi�������
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��� Proof of Proposition ���

The proof of Proposition ��� copies the proofs of Lee ������� Theorems ���� ���� and ���� Lee�s
results cover only the case � � � but can easily be adapted to � � �� For the sake of completeness
we give the proof in detail�

Strategy of the Proof

Recall that b � � and that the �non�linear� operator L� is de�ned by

L�u � �tu� �
�
�u� u���


As indicated by Proposition ��	� a solution of L�u � 
 should be �close� to multiple of

��t� x� � t�d���log t����� exp��kxk���t�


However� in Proposition ��	 we had no control of the constants a and A of the upper and lower
bounds of u�t� x� f� in terms of ��t� x�� �The point that � in the upper and lower bounds is evaluated
not at time t but at t�� and �t respectively could be repaired rather easily��
More precisely� we would like to �nd a constant 	� such that for � � 
 and t large enough

	���� ���t log t����� exp

�
�kxk

�

�t

�
� u�t� x� f�

� 	��� � ���t log t����� exp

�
� kxk�
�t�� � ��

�
� x � Rd 


We make the following ansatz to determine 	� � For 	 � 
 de�ne eu by
eu � 	�� t�����log t���������g�t����x�� �����

with a �smooth� function g�
Let H � �� �� I � �

���
x
�r� and

f��t� x� � 	��� exp���� � ��kxk���t�� 	

�
exp��kxk���t�


Then
L�eu � �t log t���������

h
f��t� x�� �Hg��t����x�

i
� o��t log t����������


Hence we search for 	 such that Hg�x� � f���� x� has a solution g� In Lemma ��� we construct a
right inverse G of H on a certain subspace V � Cb�R

d �� It turns out that f���� �� � V if and only
if

	 � 	� � �
�

�
�� � ��������� 
 �����

The problem with this ansatz is that we can not control the tail behaviour of g�x� at in�nity�
So now that we have determined 	� we come back to the main idea of constructing sub� and
supersolutions to L�u � 
� We try the following ansatz�

u�t� x� � �	� � �� ��t� x� � t�����log t�������g��t����x��

u�t� x� � �	� � �� ��t� x� � t�����log t�������g��t����x��
���	�
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where the functions g� and g� will be determined in terms of G� In Lemma ��� we control the tails
of g� and g� and in Lemma ��� we show that these u and u are indeed sub� and supersolutions to
our problem�
The second step in the proof of Proposition ��� is to deal with the fact that we rescale the

initial value of our Cauchy problem� i�e� that we start u in �log t�����f � We use our new estimates
on the �non�rescaled� behaviour of u to give a re�nement of Lemma �� that also contains an upper
bound �Lemma ���� First we reduce the problem to initial conditions of the form a p�� a � 
�
�Lemma ��	�� Next we use a similar scaling and comparison argument as in the proof of Lemma ��
to deal with general initial data�
The conclusion of part �i� of Proposition ��� is then easy� Statement �ii� follows by a simple

dominated convergence argument�

The Details

We start by giving a right inverse G of H � �� �� I � �
���

x
�r� on the linear space V generated

by functions Rd 	 R of the type

qa�b�x� � a�d�� exp

�
�kxk

�

�a

�
� b�d�� exp

�
�kxk

�

�b

�
� a� b � 



De�ne for s � 
 and y� z � Rd �

G�s� y� z� � s�������� s���d�� exp

�
�ky � s���zk�

���� s�

�



Lemma 
�� We can de�ne a linear operator G � V 	 Cb�R
d � by

�Gqa�b��y� �

Z �

�

Z
Rd

G�s� y� z�qa�b�z� dz ds


G is the right inverse of H on V � that is� HG � idV �

Proof It is easily veri�ed that the integral converges� Hence G is well de�ned� Now let

v�t� x� �

Z t

�

Z
Rd

�����d���t� s��d�� exp

�
�kx� zk�
��t� s�

�
s���d��qa�b�s

����z� dz ds


Note that the integral converges� that v��� �� � Gqa�b and that�
�t � �

�
�

�
v�t� x� � t���d��q�t����x�


By the substitution s� � ts we obtain v�t� x� � t�d��v��� t����x�� Thus ��t � �
���v�t� x� �

t���d���Hv��� ����t����x�
 Hence qa�b�y� � Hv��� y� � H�Gqa�b��y� as desired� �

Note that we can �nd a function g such that Hg � f���� �� if f���� �� � V � This� however� is
equivalent to 	 � 	� with 	� de�ned in �����
The next aim is to construct the functions g� and g� of ���	� and to give upper and lower

bounds for g� and g��
For 
 � � � min� �

��� � 	���� �where
�

��� �� if � � �� de�ne

q��x� � ��q���������
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and
q��x� � ��q��k
���������

where

�� � ����� �
�	� � �����

�� � �����
�

�� � ����� �
�	� � �����

�� � �����
�

and k � �����	��� Now let g
� � Gq� and g� � Gq��

Lemma 
�	 There exist constants 
 � m�M �� such that for all x � Rd

�m exp
�
�kxk

�

�

�
� g��x� � M exp

�
� kxk�
��� � ��

�
� ����

�m exp
�
�kxk

�

�

�
� g��x� � M exp

�
� kxk�
��� � k��

�

 �����

Proof We only give the proof of ������ The proof of ���� is similar but easier�
By the substitution y � s���z and the Chapman�Kolmogorov equation we get

g��x� � ��
Z �

�

ds

Z
Rd

dz s�������� s���d�� exp

�
�kx� s���zk�

���� s�

�
�����


�
�� � k���d�� exp

�
� kzk�
��� � k��

�
� �� � ��d�� exp

�
��� � ��

kzk�
�

��
� ��

Z �

�

ds s��

�
�� � sk���d�� exp

�
� kxk�
��� � sk��

�

�
�
�� �s

� � �

��d��
exp

��� kxk�
�
	
�� �s

���



�A�� 


Choose a � �
� ��� Then clearly R �

a � � � ds � �
R �

a s
���� � sk���d�� ds� exp

	
� kxk�

����k
�



� By partial

integration we see that the
R a
�
term equalsZ a

�

ds log s

�
k�
d�� � sk�� � kxk�
��� � sk����d��

exp

�
� kxk�
��� � sk��

�
����
�

�
�

� � �

d��� �s
��� � � kxk�

�
	
�� �s

���


��d�� exp
��� kxk�

�
	
�� �s

���



�A
���

��log a�

�
�� � ak���d�� exp

�
� kxk�
��� � ak��

�

�
�
�� �a

� � �

��d��
exp

��� kxk�
�
	
�� �a

���



�A��

� O

�
�� � kxk�� exp

�
� kxk�
��� � ak��

��
� O

�
exp

�
� kxk�
��� � k��

��



�
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Now we are able to construct our sub� and supersolutions u and u�

Lemma 
�
 Let 
 � � � min� �
��� � 	���� and g� and g� as in Lemma ���� De�ne u and u by

u�t� x� � �	� � �� ��t� x� � t�����log t�������g��t����x��

u�t� x� � �	� � �� ��t� x� � t�����log t�������g��t����x�


Then L�u � 
 and L�u � 
� Furthermore for t large enough and all x � Rd


 � �	� � ��� ��t� x� � u�t� x� � 	� �t log t�
���� exp

�
� kxk�
�t�� � ��

�
� ������


 � 	� ��t� x� � u�t� x� � �	� � ��� �t log t�
���� exp

�
� kxk�
�t�� � ��

�

 ������

Proof From ���� and ����� it is clear that ������ and ������ hold� In order to show that u and u
are sub� and supersolutions we have to give upper and lower bounds for L�u and L�u� Note that
for a� b � R� a � 
 and jbj�a small enough j�a � b���� � a��� j � �a�b� We use this estimate to
show that

L�u�t� x� � L���	� � ����t� x�� � �t log t��������Hg���t����x� ������

��M��	� � ����t� x���t�����log t������� exp

�
� kxk�
�t�� � ��

�
�m�� � ����t�������log t������� exp��kxk���t�

� �t log t�������

�
�	� � �����e������kxk���t � 	� � �

�
e�kxk

���t � ��e�kxk
���t

����� � �����e������kxk���t
i
�O�t�������log t�������e�kxk

���t�

� �t log t�������

�
�� � 	� � �

�

�
e�kxk

���t �O�t�������log t�������e�kxk
���t�

� 
�

for t large enough� since �� � ���

� � 
 for 
 � � � 	� �

Similarly� for t large�

L�u � L���	� � ����t� x�� � �t log t��������Hg���t����x� ������

��m��	� � ����t� x���t�����log t�������e�kxk
���t

�M�� � �����t�������log t�������e�kxk
���t���k
��

� �t log t�������
h
���� � k���d��e�kxk

���t���k
� � 	� � �

�
e�kxk

���t
i

�O��t�������log t�������e�kxk
���t���k
��

� 
�

since ���� � k���d�� � ���

� � 
� To see the latter inequality� note that

� � k� � � �
�

�
����	� �

��

� � �

�
	�

�

� �
�

�
��	�

���
� �

�
�

��

� � �
�	� � ���

�
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This inequality holds since � � 	� � Thus

�	� � ��

�
�	� � ���

�� � �����
�� � k������ � �

�

�
� 
�

as claimed� �

A simple consequence of Lemma ��� is the following result on the asymptotic behaviour of u�

Lemma 
�� For f � C��
c �Rd� the following holds�

lim
t��

�t log t����u�t� t���x� f� � 	� e
�kxk���� x � Rd 


Proof The proof of this statement is simple with Lemma ��� at hand� Since we will not make
use of this Lemma we omit the details and refer the reader to Lee ������� pages �
�"�� �

So far we have considered only a �xed initial condition u�
� �� f� � f of the Cauchy problem
L�u � 
� The next aim is to change the initial condition to �log t�

����f �
De�ne

b�x� f� � inf
s��
lim inf
t��

�t log t����u�t� s� t���x� �log t�����f�

and

B�x� f� � sup
s��
lim sup
t��

�t log t����u�t� s� t���x� �log t�����f�


In order to proof Proposition ��� we will give upper and lower bounds for B and b respectively�
The �rst step is to reduce the situation to f�x� replaced by h�� fi�����d�� exp��kxk����� Recall

that pt is the heat kernel�

Lemma 
�� Let f � C��
c �Rd �� For x � Rd the following inequalities hold	

b�x� f� � b�x� h�� fi p���
B�x� f� � B�x� h�� fi p��


Proof Note that for x� y � Rd and t� � � 
�
kxk�

�t�� � ��
� kx� yk�

�t
� �

t
� � � �

��
kyk�


Hence for K � R
d compact and � � 
 we can �nd � � 
 and t� � 
 such that for f � C��

c �Rd �
with supp�f� � K�

pt � f � �� � �� h�� fi p�����t� t � t�


Similarly we get � � 
 and t� � 
 such that

pt � f � ��� �� h�� fi p�����t� t � t�


Hence if we let dt � � kfk��� � log t� we get with Lemma ��� and Lemma ��� that for dt � t��

u�t� s� t���x� �log t����� f� � u
	
t� s� dt� t

���x�u�dt� � � �log t����� f�



� u
	
t� s� dt� t

���x� ��� �� �log t����� �pdt � f�



� u
	
t� s� dt� t

���x� ��� ��� �log t����� h�� fip�����dt



� ��� ��� u
	
t� s� dt� t

���x� �log t����� h�� fip�����dt



� ��� ��� u
	
t� s� �dt � �� t���x� �log t����� h�� fip�
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Since dt � t� we obtain
b�x� f� � ��� ��� b�x� h�� fi p��


Now let � 	 
 to obtain the claim� The claim for B follows analogously using the opposite
inequality in Lemma ���� �

Now we give the bounds for b�x� a p�� and B�x� a p��� The result is a re�nement of Lemma ��
and will be obtained by a similar scaling argument�

Lemma 
� For a � 
 and x � Rd the following inequalities hold

b
�
x� a exp��k � k����� � � �	�a�

�

a� � �	���

����

� exp��kxk����

B
�
x� a exp��k � k����� � � �	�a�

�

a� � �	���

����

� exp��kxk����


Proof
We do the proof only for the second inequality� The proof of the other inequality is quite

similar�
Recall from ������ that

u�t� x� ����f�������� � ����u��t� ����x� f�� � � 

 ������

Thus for s � 
� t� s � 
 large enough and � � ��t� � t����
��a� we have by ������

u�t� s� x� �log t�����a exp��k � k����� ����	�

� u�t� s� x� 	��log ��
���� exp��k � k�����

� u�t� s� x� ����u��� �������
� ����u���t� s�� ����x�u��� ���
� ����u���t� s� ��� ����x�


We infer that for � � 
 uniformly in x � Rd �

sup
s��
lim sup
t��

�t log t����u�t� s� t���x� �log t�����a exp��k � k����� �����

� sup
s��
lim sup
t��

�t log t��������u���t� s� ��� ��t����x�

� sup
s��
lim sup
t��

�t log t�����t� s� �������log���t� s� ��������	�

�� � �� exp

�
� kxk�t
��� � ���t� s� ��

�
� sup

s��
lim sup
t��

�
log t

log �� log t

����

	��� � �� exp��kxk����� � ���

� 	��� � �� exp��kxk����� � ���

�
�	�a�

�

a� � �	���

����




Now let �	 
� �
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Proof of Proposition 
��

The proof of Proposition ��� is now easy� Combine Lemma ��	 and Lemma �� to obtain part �i��
In order to prove part �ii� note that by Lemma ���

�t log t����u�t� t���x� �log t����� f� � t����pt � f��t���x�
� �p� � �t���f�t��������x�
� cf p��x� for t � �

for some cf � 
� Hence dominated convergence yields the claim� �

��� Proof of Theorem �

First consider the case where ��t� is SBM�d� ����d� ��� Note that here the assertion is immediate
from Proposition ���� �ii�� by ������ and the scaling relation �see ������

L����t�����t�t������ � L�����t�������
 ������

A more detailed discussion precedes Proposition ����
Now assume that ��t� � �t� is BBM�d� � � ��d� ��� The link to the SBM is the embedded

particle system �an idea that goes back to Gorostiza et al�� Lemme ���

�For �xed time horizon t� poissonizing the initial state m �rst and then running
a BBM �s� is the same as running SBM ��s� with initial state m and then
poissonizing the random population �t��

������

To make this precise we de�ne a new random measure Xt such that L�Xtj�t� � H��t� �recall that
H�m� is the law of a Possion point process with intensity measure m� � Then ������ says that for
m �M�Rd ��

LH�m��t� � Lm�Xt�
 ����
�

To check this let f � C�
c �R

d �� Then �recall ������ and ��������

EH�m��exp��ht� fi�� � exp

�
�
Z
m�dx�

	
��E�x �exp ��ht� fi��


�
� exp��hm�u�t� �� �� e�f �i� ������

� Em�exp��h�t� �� e�f i��
� Em�exp��hXt� fi��


Now for A � B�Rd� bounded and � � 
 by the law of large numbers�

E�log t�������t��d���log t����� jXt�t
���A�� �t�t

���A�j� t���	 

 ������

�

��� Proof of Theorem �

Note that as above� the case of ��t� BBM can be derived from the case ��t� SBM� Hence we will
now assume that ��t� � ��t� is SBM�d� � � ��d� ���



INFINITE VARIANCE BRANCHING MODELS ��

The idea of the proof is an induction over the length of the tree T� Recall the heuristics
given in the discussion preceding Theorem �� The key point in the induction is to show that

the �important� information about e�t�t� ���
	�t����t���
d

is already contained in e�t�t����t���� t����d��
We do so by constructing a coupling of ��t�t��s�s�� with a SBM�d� � � ��d� �� ��

�
s �s�� started in

t��d���t�t����t���� t����d� � �� We show that the coupling is successful in a certain sense within
time s � t��
We prepare for the proof of Theorem � by stating a coupling lemma and a comparison lemma

both taken from Klenke ����� �stated there for the case � � � only�� Note that we give a new
proof of the comparison lemma since the second moment used in Klenke ����� is not available
here�

Lemma 
�� �Coupling� Let S � R � 
� Consider ���s �s�� SBM�d� � � ��d� ��� Assume that
L���� � is translation invariant and that � � 
 and 
 � � �� are chosen such that

E
h
���
�
�
� ��d

� i
� �

E
h ��R�d��� ��
� R�

d�� S�d��� ��
� S�
d�
�� i � �

E
h ����� ��
� S�d�� ���

�
S�z � �
� ��d�

��� i � �Sd � z � ���� ��d


Then there exists a coupling ���s � �
�
s �s�� �i�e�� ���s � is also SBM�d� ����d� �� and both processes are

de�ned on the same probability space� such that

L����
����� � � S�d��� ��
� S�

d� � � ������

and

E�k���s � ��s �
���
B
k� � ��B� �

�
��� d e�D

���s � �

r
d

�
�Rs����

�
� ������

where B � B�Rd�� B � �
� S�d and D � dist�B�Rd n �
� S�d��

Proof This is Corollary �� in Klenke ������ In fact the proof given there does not rely on the
�nite variance available there� �

With the tool of the coupling lemma we are able to give a proof of the following lemma that
does not rely on second moments�

Lemma 
�� �Comparison� Let � � ���� �� and let a�t�� b�t� � t�� i�e�� limt��
log a�t�
log t �

limt��
log b�t�
log t � �� Then

E�log t�����
h
�log t�����

���a�t��d�t��
� a�t��d�� b�t��d�t��
� b�t��
d�
���i t���	 

 ������

Proof The main tool for the proof is the coupling lemma� Lemma ���� We prepare for the use of
it�
By the basic scaling relation ������ we may w�l�o�g� assume � � 
� Also we can restrict ourselves

to the case b�t� � � and a�t� � 
� log a�t�� log t� Since

E�log t�������log t����� jS�d�t��
� S�d��R�d�t��
� R�
d�j� t���	 
 ����	�
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for any R�S � 
� we may �nd R � R�t� � 
� S � S�t� � � such that

E�log t�������log t����� jS�t��d�t����
� S�t��
d��R�t��d�t����
� R�t��

d�j� �� �t t���	 

 �����

By a similar argument we obtain �maybe by enlarging �t and changing R�t� and S�t� a little�

sup
z�	���
d

E�log t�������log t�����S�dj�t����
� S�
d�� �t���S�z � �
� ��

d��j� � �t
t���	 

 ������

�For example� for �xed S choose N � N large and take the maximum over z � f
� �
N � 
 
 
 � �gd� This

term clearly vanishes as t 	 �� The error term of the two maxima results from the �less than�
Nd���d blocks of size �
� �

N �
d at the surface of �z � �
� ��d� and is thus bounded by �d �

N � Now let
S � S�t� and N � N�t� increase slowly to ���
We apply the coupling lemma ��� to obtain a SBM�d� � � �� �� ���s �s�t�� with initial state

L���t��j�t��� � S�t��d�t����
� S�t��
d� � � and

E�log t�������log t�����k���t � ��t �
���
B
k� � ��B����t � d � e�D�

� �
p
d�� R�t��� ������

where B � B�Rd� is bounded and D � dist�B�Rd n �
� S�t��d�� In particular� for M � � there

exists �Mt
t���	 
 such that for any Borel set B � ��M�M �d

E�log t�������log t�����k���t � ��t �
���
B
k� � �Mt ��B�
 ����
�

Now �x a value � � �log t�����S�t��d�t����
� S�t��
d�� According to Theorem � �and the basic

scaling�

�log t�����a�t��d��t ��
� a�t��
d�

t���	 � ������

and
�log t�������t ��
� ��

d�
t���	 �


A simple uniform integrability argument yields

E�log t�������log t����� ja�t��d� �t��
� a�t��d�� � �t��
� ��
d�j t���	 

 ������

Combined with ����
� the proof is complete� �

Proof of Theorem 


Recall that we do the proof for the case in which ��t� � ��t� is SBM�d� � � ��d� ��� The proof is
almost identical to that given in Klenke ������ The only �real� di�erence to the case � � � is
the modi�ed proof of Lemma ��� given above and some changes in the constants� However for the
sake of completeness we give the proof here in detail�
We do the proof by induction over the length of the tree T� For T � f�g this is the assertion

of Theorem �� Now assume that the claim has been shown for all trees shorter than T�
The idea of the proof is the following� We introduce a time scale L�t� � tA��� and couple ��s�

for s � t � L�t� with another process ���s �� This process shall have initial con�guration M����
where � is the empirical population density of ��t�L�t� in a box of length � tA������ L�t� will be

chosen small enough that the evolutions of the subtrees �resulting from eliminating � from T� are
approximately independent� On the other hand L�t� has to be chosen large enough so that the
coupling of Lemma ��� with R�t� � tA����� is successful� Here a the details�
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Let b � maxfdiam�Be�� e � Tg� Let dt � 
� t	� such that

t�A�e�f��dt��� � kxet � xft k � b�tA�e��� � tA�f���� ������

� kxet � xft k� b�tA�e��� � tA�f���� � �
�
t�A�e�f��dt���

for all e� f � T� We may assume that tdt t���	 �� Let � �� A��� and de�ne
S � S�t� � t���dt����

R � R�t� � t����dt����

L � L�t� � t���dt 


Let
Be
t � xet � tA�e���Be ������

and
Bt �

�
e�T

Be
t 
 ������

By shifting X � �xet � e � T�� if necessary� we can assume that Bt � �
� S�d for all t � 
 and that

L���� � dist�Bt�R
d n �
� S�d�� t���	 �
 ����	�

Apply Corollary ��� with ��� � �t�L�t�� s � L�t�� � � �log t���� and with � � �log t�����t� where

�t
t���	 
� This last choice is possible due to Lemma ���� Thus we obtain a coupling ���s � �

�
s �s��

with L����
����s � �M�S�d��� ��
� S�

d�� such that there exists a sequence �t � 
 with

E�log t�����
h����e��L�t� � e��L�t���C����i � �t � ��C� �C � B�Rd� bounded
 �����

So all we have to show is

L�log t�����

�
�log t�����

	
t�A�e�d����L�t��B

e
t �


e�T

�
t��
�
 L�

h
���Be�Ze

���A�e��c�
�e�T

i

 ������

By Theorem � we know that

L�log t�����
h
�log t�����S�d��� ��
� S�

d�
i
t��
�
 L��Z�����c� �
 ������

Hence it su ces to show that for � � 
�

L��log t�����
�
�log t�����

	
t�A�e�d���L�t��B

e
t �


e�T

�
t��
�
 L�

h
�Ze

���A�e��c�
�e�T

i
����
�

� L������
h
�����Ze

���A�e����c�
�e�T

i



In the second line we have used the scaling property of �� � �� branching �di�usion��
Let Tj � f�j� l�� 
 
 
 � ln� � T� n � Ng� j � �� 
 
 
 � J� be the partition of T into subtrees Tj

according to the o�spring of the root �T � f�g � T� � � � � � TJ�� In order to prove ����
� by the
induction hypothesis it su ces to show that�

�log t�����t�A�e�d���L�t��B
e
t �
�
e�Tj

� j � �� 
 
 
 � J�

are asymptotically independent random variables�
������
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For each j � �� 
 
 
 � J � �x one ej � Tj and let Cj � Cj�t� � x
ej
t � ��R�t�� R�t��d and C� �

R
d n �C� � � � � � CJ �� Then for t large enough we have Ci � Cj � � for i �� j� Let

�j � �j�t� � inf
e�Tj

dist�Be
t �R

d n Cj�


Since A � T	 I is strictly decreasing� we have �j�t��
p
L�t�

t���	 ��
Let ��js�s��� j � 
� �� 
 
 
 � J� be independent SBM�d����"d��� with initial states

�j� � �ICj��log t�
����� j � 
� �� 
 
 
 � J


We can assume �s � ��
s � � � �� �Js 
 Now for j � �� 
 
 
 � J and e � Tj �

E

�
�log t�����t�A�e�d��

JX
i���i 	�j

�iL�t��B
e
t �

�
������

� ���Be�t�A�e�d��

Z
RdnCj

dx

Z
Be
t

dy pL�t��x� y� � ���Be� exp
����

j�L�t�
� t���	 



Thus ������ holds and the proof is complete�
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