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Abstract

We consider two spatial branching models on R?: branching Brownian motion with a
branching law in the domain of normal attraction of a (1 + 3) stable law, 0 < 8 < 1, and the
corresponding high density limit measure valued diffusion.

The longtime behaviour of both models depends highly on 3 and d.

We show that for d < 2/ the only invariant measure is dp, the unit mass on the empty
configuration. Furthermore we give a precise condition for convergence towards do.

For d > 2/3 it is known that there exists a family (vg, 6 € [0,00)) of non-trivial invariant
measures. We show that every invariant measure is a convex combination of the vg. Both
results have been known before only under an additional finite mean assumption.

For the critical dimension d = 2/8 we show that both models display the phenomenon of
diffusive clustering. This means that clusters grow spatially on a random scale. We give a
precise description of the clusters via multiple scale analysis.

Our methods rely mainly on studying sub- and supersolutions of the reaction diffusion
equation du/dt — 1 Au+u'? = 0.
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1 Introduction and main results

1.1 Survey

Branching Brownian motion (BBM) is an (infinite) particle system in which particles perform
independent Brownian motions and split at random times into a random number of offspring
particles. We consider the process (¢;);>0 which will be either branching Brownian motion on
R? with offspring probability generating function f(z) = z + %(1 —2)18 0 < B < 1, or its high
density limit measure valued diffusion, the so-called super Brownian motion (SBM). (Note that the
probability distribution generated by f is in the normal domain of attraction of a stable law with
index 1+ 3. In particular, for 8 < 1 this law does not have variance.) In the SBM the transport of
mass is governed by the (deterministic) heat flow while the local “intensity of matter” fluctuates
randomly.

A path-wise construction of these processes in terms of excursions of certain random walks and
Lévy processes respectively can be found in a recent paper by Le Gall and Le Jan (1998). See also
Gorostiza et al. (1992) for a corresponding multi-type model.

It is well known that dg, the unit mass on the empty configuration, is the only invariant measure
with finite intensity if d < 2/8. One aim of this paper is to show that the finite intensity assumption
can be dropped, hence dg is the only invariant measure for (¢;) if d < 2/43. In the case of finite
variance branching (8 = 1) this has been done before by Bramson, Cox and Greven (1993). Their
approach (as ours) is based on the study of sub- and supersolutions u(t,z; f), x € R?, t > 0, to
the reaction diffusion equation

(0 — %A)u +ultP =0, (1.1)

where 9; = d/dt and A denotes the Laplacian in RY. While most of their techniques work also in
our setting, part of the argument of Bramson, Cox and Greven (1993) relies on a second moment
estimate and had to be replaced to cope with 8 < 1.

In the high dimensional case d > 2/( it is known that there exists a family (vp, 8 € [0, 00))
of extremal invariant (and translation invariant) measures for (). All invariant measures with
finite intensity can be represented as a convex combination of these vy. We show in this paper that
the finite intensity assumption can be dropped. For the case 8 = 1 this has been shown before by
Bramson, Cox and Greven (1997).

The other main point of this paper is to investigate closer the clustering in the critical dimension
d = 2/3. We show that the so-called diffusive clustering occurs. This phenomenon has first been
investigated for the voter model by Cox and Griffeath (1986). Roughly speaking diffusive clustering
means that clusters grow spatially at a random order of magnitude. This phenomenon has been
observed for a lot of interacting particle systems and related models such as the voter model, linearly
interacting diffusions, critical binary branching Brownian motion, etc. A detailed treatment can
be found in Klenke (1996) and Klenke (1997). All these models have in common that the local
random fluctuations (given, e.g., by the branching law or the resampling mechanism) have finite
variances and that the critical dimension (in which diffusive clustering occurs) is d = 2.

This is however the first case in which diffusive clustering is observed in absence of a second
moment. In the finite variance models it turned out that the growth of the cluster height is
dominated by the Green function

G(t) :/1 ps(0,0) ds,

where p;(+,-) is the (symmetric) interaction kernel of the model. Of course, here p; is the heat
kernel. In the absence of a second moment we show that the cluster growth is now governed by
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the quantity

Gps(t) = </1tps(o,0)5 ds)l/ﬁ.

This object naturally arises in the investigation of Kallenberg’s backwards tree of the clusters (see
Gorostiza and Wakolbinger (1991)). In this paper we do not make explicit use of the backwards
tree but rely on pde methods, the connection being that (1.1) is Kolmogorov’s backwards equation
for the Laplace functionals of ().

1.2 The Models

We give a short description of the models considered in this paper. For more details we refer the
reader to Dawson (1993). Unfortunately we have to introduce a lot of notation first.

Basic Definitions for Random Measures

Let E be a locally compact polish space. By B(E) we denote the Borel o-field on E. By C(E)
and C.(E) we denote the spaces of continuous real valued functions on E that are bounded resp.
have compact support. Further let CF = {f € C.: f >0} and CI* = {f € CF : f # 0} and
define C;r and C’b+ * analogously.

A measure p on B(E) is called locally finite if u(K) < oo for all compact sets K C E. Let

M(E) = {locally finite measures on E} (1.2)

and M;(E) ={p € M(E) : p(E) < 00}.

For 4 € M(E) and f : E — R measurable and p-integrable we define (i, f) := [ f du. M(E)
is a polish space with the vague topology, defined by p, — p iff {(u,, Y — (i, f) for all f € C.(E).
The space M; (M(E)) of probability measures on M(E), equipped with the weak topology, is also
polish (see, e.g., Kallenberg (1983)). For weak convergence of probability measures we use the
symbol “=".

The space of (non-negative) integer valued measures p on B(E) will be denoted by

N(E)={ue M(E) : n(A) € {0,1,2...,00} VAeB(E)}. (1.3)

For m € M(R?) we denote by H(m) € M;(N(R?)) the distribution of the Poisson point, process
on R? with intensity measure m, i.e., for f € C:F(RY),

[ Hm) e D = exp(~(m,1 - e ). (1.4)

We use the notation £[X] for the distribution of a random variable X. Let (X;);>0 be a Markov
process with values in E and z € E or Q € M, (E). By L*[(Xt)t>0] and LP[(X;)¢>0] we denote
the distributions of (X;);>o with £*[X,] = 6, and £Q[X0] = Q. If (X;) is cadlag, convergence of
paths will be understood in the Skorohod topology. Convergence of finite dimensional marginals
will be indicated by “fdd”.

(1 + B)-Branching Brownian Motion

Let 0 < 8 < 1 and let (pg)r=o,1,.. be the probability distribution on Ny with p.g.f. f(z) =
z+ L1 -2)08, 2 €[0,1], ie,
1/2 if k =0,
(1-p)/2 if k=1,

1(—1)’6<1+ﬂ> ith=23,...

Dk (1.5)

2 k
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Note that (pg) is critical,that is Y kpr = 1, and is in the normal domain of attraction of a stable
law on [0, c0) with index (1 + 8). In particular, for 8 < 1 the law (p;,) has infinite variance.

We will consider a particle performing a Brownian motion on R? and with an exponential
lifetime with mean 1/2b > 0. At the time of death the particle produces an offspring of k particles
with probability pr. The offspring behave as k independent copies of the one-particle system
started at the parent particle’s final position. If we start the process with more than one particle
at time 0, we assume that all particles are independent.

The process

n:(A) = #{particles in A}, A e B(RY), t >0, (1.6)
will be called the branching Brownian motion on R? with parameters 1 + 3 and b, abbreviated
BBM(d, 1 + ,b).

(1 + B)-Super Brownian Motion

Next we consider the short lifetime high density limit of BBM(d,1 + 3,b). Let u € M;g(R?)
and pV € N¢(R?), N € N, such that N~'uN — p, as N — oco. For N € N let (n)¢>0 be
BBM(d, 1+ 3,bN?) with initial state n)Y = uV. It is well known that there exists a cadlag Markov
process ((¢)¢>0 with values in M¢(R?) such that

CU(Grse] = w— Jim £ [(%niv )tzo} (1.7)
(see Dawson (1993), Section 4.4fF).

The process ((¢):>o0 will be called super Brownian motion on R? with parameters 1 + 3 and b,
abbreviated SBM(d, 1 + 3, b).

For u € M(R?) we can define ((;);>0 with initial configuration (; = p as the increasing limit
of ((/")¢>0 with initial configurations u” € M¢(R?), n € N, such that g™ 1 p. It is known that
SBM(d, 1 + 3,b) takes values in M(R?) if we impose a regularity condition on the initial state
, e.g., assume (u, (1 + 1| -]|*)"?)) < oo for some p > d/2. The same condition also assures that
n € N(R?) a.s. for all ¢ > 0.

Log-Laplace equation

Let f € C;‘ (R?). A prominent role in this paper is played by the solution u(t,z; f), * € R?, ¢t > 0,
of the Cauchy problem

Lgu(t,z; f) = 0, z€R, >0, (1.8)
w0,z f) = f(a), z € RY,
where 1
Lgu(t,z; f) = (0, — §A)u(t,w;f) + bu(t,z; f)15. (1.9)
Since (1.8) is time-homogeneous, u has the (non-linear) semigroup property
u(t + s,z; f) = u(t,z;u(s,-; f)), reR, s,t>0. (1.10)

Note that for p > 0 the following scaling relation holds,
u(t,z; f) = pPulpt, p s p O f (0712 1)),  meRY, t>0. (1.11)

The reaction-diffusion equation (1.9) is linked to our branching processes by the equations (see,
e.g., Dawson (1993))

Eém [eXp(—<77t;f>)] =1 —U(t,l’;l _eif)v (112)
E’ [exp(—((¢, f))] exp(—u(t, z; f)). (1.13)
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1.3 Invariant Laws

Recall that p;(z) = (27t)~%/2 exp(—||z||?/2t) is the heat kernel on R?. Define G5(t) by

t 1/
Golt) = ( /1 s (0)° ds) . (1.14)
For d € N define ¢ : (1,00) x R? — [0, 00) by
o(t, x) = pi(x)/Gp(t). (1.15)

It will turn out that (in the particle language) G3(t) measures the concentration of particles around
a certain point (say the origin), given that there is a particle. It is the typical concentration of
particles or average “cluster height”. On the other hand p;(x) is the expected intensity of particles
at the origin if we start in J,.. Consequently, the function ¢(¢,z) measures the probability of seeing
a particle at the origin at time # > 1 if we start with one “particle” at time 0 at site z € R?.

Low dimension
Recall that (1)) is either BBM(d, 1+ 3,b) or SBM(d, 1 + 3, b).
Theorem 1 Assume d < 2/8. Then the following hold.

() L[] ZX 6o if and only if
Lo, ¢(r,-))] = do, T — 0. (1.16)

(ii) If condition (1.16) does not hold, then 1y is unstable, i.e. for any f € CH+(R?) the sequence
(4, f) is stochastically unbounded.

(iii) If L[(¥o, ¢(r,"))] = 0o, 7 — 00, then 1)y explodes, i.e. for any f € CFT(R?) almost surely
(e, fY = 00, as t = oo.

Corollary 1.1 If d < 2/, then the only invariant measure for 1 is do. a
In order to check the conditions of Theorem 1 it is useful to note that ¢(¢,z) can be bounded from
above and below by the function ® : (1,00) x R? — [0, 00), defined by

t/2=1Bp,(x) if B<2/d
®(t,z) =< (logt) YPpy(x) if B=2/d (1.17)
pe(z) if B>2/d.

More precisely, there exist ¢,C' > 0 (depending only on d and 3) such that for ¢+ > 2 and = € R?
c®(t,x) < ¢(t,z) < CP(t,z). (1.18)

(This is immediate from the fact that p,(0) = (27t)~%2.) Hence it suffices to verify the conditions
of Theorem 1 for @ instead of ¢.
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High dimension

Let Z be the set of invariant measures for (¢), by Z, C Z we denote its extremal elements. It is
well known (see Gorostiza and Wakolbinger (1992), Theorem 1) that there exists a one parameter
family {vp, 6 € [0,00)} C Z. with the following properties. Each vy is translation invariant, ergodic
and has intensity 0, i.e., [vg(dm)(m, f) = 0\, f) for f € CFH(R?). Further for L[i)o] translation
invariant and ergodic with E[(¢0, f)] = 6(}, f),

t—qo

L[] = vy.

For any 1 € 7 with o-finite intensity measure there exists a unique probability measure F), on
[0, 00) such that

u:/ugFM(dG). (1.19)

Our point is to drop the assumption of the o-finiteness on p to allow for a representation as in
(1.19).

Theorem 2 Let d > 2/3 and let (v;) either BBM(d,1 + 3,b) or SBM(d,1 + 3,b). Then the
following holds.

I, = {vp, 6 € [0,00)} and for any u € I there exists a unique probability distribution F, on
[0,00) such that p = [veF,(df).

The crucial step to prove Theorem 2 is the following proposition.

Proposition 1.2 Any invariant measure is translation invariant.

1.4 Critical dimension: Diffusive clustering

Our aim is to give a precise description of the clustering in the critical dimension d = 2/3. Hence
we will assume 3 = 2/d. For simplicity of notation we will also assume b = 1 in the following
discussion.

Proceeding as in Klenke (1997) we introduce the following concepts for the description of the
heights of the clusters and their expansions in space.

(1) High density rescaling
For time ¢ > 1 we define o
P = Y2 = (logt) /P, (1.20)

with (recall that A is the d-dimensional Lebesgue measure)

H((logt)/BX) if ¢ is BBM,
L = M; := . . 1.21
[1/10] t { (5(10g t)l/ﬁ)\ if ’(/Jt is SBM. ( )
(2) Spatial rescaling
For (¢) BBM(d, 1+ B,1) or SBM(d, 1+ 3,1) let I =[0,1] respectively I = (—o0,1]. We fix
a € I and define (¢8) by

U = Sauth, a€l, (1.22)

where
Sa: M(RY) = M(RT),  pu() = t7042p (2072 ),

That is, for B € B(R?) we set 1®(B) = t=24/2¢,(t*/2B). As above we let ¢y = 10
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Remark: Since we intend to take the limit ¢ — oo, it would not make sense to allow a < 0
for BBM. Due to the particle structure in this case we would get PM¢[72(B) = 0] ‘=3 1 for all
bounded sets B € B(R?). This leads us to the different choices of I.

We introduce the total mass process (Z)¢>0 of SBM(d, 1+ 3, 1) which is the “diffusion limit”
of Galton-Watson processes with offspring probabilities defined in (1.5) above. (Z;) is a process
with independent increments which can be characterized by its log-Laplace transform

v(t, K,0) = —log EX[exp(—62,)] (1.23)
that is the unique solution of
v(0,K,0) = 0K,
(1.24)
ov(t,K,0) = —v(t,K,0)*5.

The solution can be given explicitly:

o(t, K,0) = (Bt + (K8)~%)~1/5. (1.25)
Let cg = (2n(1+ 8)*/%)~! and recall that \ is the Lebesgue measure.
Theorem 3 For (y.) BBM(d,1+2/d,1) or SBM(d,1+2/d,1) and a € I the following holds,

LM 28 LM Zey 1m0y - AL (1.26)

Multiple Scale Analysis

So far we have considered our rescaled process 15" at one scale a. A natural task is to investigate

the limit behaviour of (7,...,¢¥7") for ay,...,a, € I. In order to learn more about the spatial
structure of the clusters, we might also wish to choose different points of observation z;,...,z7 €

R?. Theorem 3 indicates that the distances ||z¢ — z{||, e # f, of these points should grow in
t on an algebraic scale a. s € I. Note that a consistent choice of the a. ; implies that 2%/ is
an ultra-metric on {1,...,n}. Hence we may assume w.l.o.g. that the points of observation are
indexed by a finite (rooted) tree T and that .y = A(e A f), where

A:T—1T

is a strictly decreasing map.

To explain this a bit, note that T carries a natural partial ordering <, where e < f iff e is an
ancestor of f, i.e., if e is closer to the root (denoted by @) than f. Hence e A f is the greatest
common ancestor of e and f.

The pair L. = (T, A) will be called a multiple space scale. We will assume that X = (2, e € T, t > 0)
is a family of points zf € R? such that

llzé — &l || m tA A2 as t — .

As usual, a; &~ b; means (loga:)/(logb:) 2% 1. We refer to X as to be L-spaced. Our aim is to

study the asymptotics of the common distribution of (recall S from (1.22))
(SA(e)vt,]-zfi[;t)eeﬂ' as t — 00,

where T, : M(R?) = M(R?) is the translation by z, (Tou)(-) = u(z + -).
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We give a heuristic motivation for the next definition. Consider the simplest case T = {0, e, f},
e A f = 0. Since Brownian motion has range t'/2, the common history of the space-time points
(t,x%), and (t,z]) ends at time ¢ — tA(¢A)_ After that time the histories of these points develop
independently. In fact, asymptotically the common history of (¢,zf) and (t,a:{ ) is contained in
Vy_yacennyz ([—tAEND/2 1AA)/2]d) - This, together with Theorem 3, suggests that the intensity
of Saey,i s Jt and SA(f)7t7;{ Jt should consist of Z.,1-4(ens)) Plus two independent increments.

To be precise, let (Zf, e € T);>o be the following Markov process on [0,00)". Each (Zf);>o is
a (1 + B) continuous state branching “diffusion” introduced in (1.23). For e, f € T with e # f we
let Zf = th for t € [0,1 — A(e A f)]. For t > 1 — A(e A f) the evolutions of Z; and th shall be
independent.

Theorem 4 (Multiple Scale)
Let (v+) be BBM(d,1 + 2/d,1) or SBM(d,1 + 2/d,1) and I = [0,1], respectively I = (—o0,1].
Then the following holds.

LM [(SA(e),tEszt)eeT:I = [(Zcea(l—A(e)) ‘A)ee'[[‘:| ’

By taking a linear tree T we obtain the following corollary.
Corollary 1.3

V[ (B)aer] =5 L [NB) - (Zogo-)aer |, B e BE'). 0

1.5 Outline

The rest of the paper is organized as follows. In Section 2 we give upper and lower bounds of
u(t,x; f) in terms of the function ¢(¢,z) in Proposition 2.6. This is the key for the proof of
Theorem 1 and 2 in Section 2 and 3. In Section 4 we give better bounds for the special situation
B = 2/d that serve to prove Proposition 4.1. A coupling technique will be employed to infer
Theorem 4.

2 Proof for the low dimensions

In this section we give some lemmas dealing with sub- and supersolutions to the equation Lgu = 0.
With the aid of these lemmas we prove Theorem 1. Some of the lemmas will be used in Section 3
to prove the high-dimensional results.

The main tool for the investigation is a maximum principle for the non-linear parabolic differ-
ential operator Lz. We state the following lemma without proof and refer the reader to Protter
and Weinberger (1967), Chapter 3.7. (In fact, Protter and Weinberger only deal with the case of
a bounded domain. Our lemma follows by approximation arguments.)

Lemma 2.1 (Maximum principle) Let L = L; g be the semi-parabolic operator on R? defined
by
1
Lu(t,z) = Owu(t,z) — §Au(t,m) + H(t,u(t,z)),
where H : [0,00) x [0,00) — [0,00) is continuous and nondecreasing in u. Let f,g € CF(R?),

f<g,and T > 0. Let u(t,x; f) and u(t,z;g) be sub- and supersolutions to Lu = 0 with initial
conditions f, respectively g, that is,

u(0,2; f) = f(x),  u(0,z;9) =g(z), x€RY
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and
Lu(t,x; f) <0,  Lu(t,z;9) >0, zeRY, te[0,T].

We also assume that u and @ are bounded and vanishing at infinity (as functions of x for any t).
Then
u(t,z; f) <ult,z;g), zeRY, tel0,T).

O

To warm up we give two simple applications of the maximum principle. Recall that u(t,z; f)
denotes the solution of the Cauchy problem (1.8).

Lemma 2.2 Let f,g € CH(R?) and let ¢ > 1. Then
u(t,@; f +9) Sult, o f) +ult,z9),  w€RY, £20 (2.1)

and
u(t,z;cf) < cult,z; f), reR, t>0. (2.2)

Furthermore, if f < g then
u(t,z; f) <ul(t,z;9), zeRY, t>0. (2.3)
Proof Check that Lg(u(t,z; f) + u(t,z;9)) > 0 and Lg(c u(t,z; f)) > 0. The last inequality is

trivial. O

Lemma 2.3 Let f € CI(R?) and let v(t,x; f) = (pt * f)(z) the solution of the heat equation
(0r — %A)U =0, v(0,-; f) = f. Then the following inequality holds,

L+ 08 115 )P0t 25 f) <ult,z; f) <w(t,a; f), z€R, >0, (2.4)
Proof Let U(t,z;K) = U(t; K), K > 0, the solution of LgU =0, U(0,- ; K) = K. The explicit

solution of this equation is
Ut; K) = K(1 4+ bK°pt)~/5.

By the maximum principle, for K > || ||,
Lpu(t,z; f) < Ow— %Au + bUPu (2.5)
— du-— %Au + (BKP)(1 + bEPB) u.
Hence zgu > 0, where Eg = EW is defined by
L i = Oyt — %Aﬂ + (bK®) (1 + bK°Bt) L.

Let @ be the solution the Zgﬁtﬂ = 0. The maximum principle implies u(t, z; f) > a(t, z; f), * € R?,
t > 0. Note that @ can be represented as

a(t,z; f) = wv(t,z; f)-exp (— /t bKP (1 +bKPBs)™! ds> (2.6)
0
= o(t,z; f)(1+ bKPBt)~/8,

Since the maximum principle implies u(t,z; f) < v(t,z; f), € R?, t > 0, the assertion is proved.
O
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Let A > 0, recall G(t) from (1.14), and define u(t, ) by
A G(1) exp (~3 51, B <2/d
At ) = { At=12G4(t)~ 1exp( (1-Ga(t)?) ";1'2), B=2/d (2.7)
At~/ exp (—% ”;t”Q) , 8> 2/d.

The definition of @ for the case 8 = 2/d might look a little strange at first glance. Clearly for ¢
large enough, T(t, ) < At~42Gs(t) ' exp ( 1 H;”tH ) However we will be able to show that @ is

a supersolution only for the definition given in (2.7).

Lemma 2.4 (Super-solution) Assume that 3 < 2/d. There exists to = to(3,d) > 0 such that
for A large enough and t > tg,
Lgu(t,z) >0, z € R (2.8)

Proof We do the proof separately for critical and low dimension.
Critical dimension (8 =2/d). Note that

Gp(t) = (2m) = (logt)'/” (2.9)

and that G3(t) = £Gs(t) = (Btlogt)~'Ga(t) = 5=4Gs(t)' =7. Hence a short calculation shows
that for ¢ > exp(2 + 4r),

Lya(t,z) = tz(;’(f))ﬁ :—%(1+%) +(1- (1+%)G5(t)_ﬁ)% (2.10)
+bA exp (—ﬂ (1= Ga(t)™") ””;LPH
u(t,z) | k3]s IISUII2
2 tG;W__%(I+%)+; 2t + b7 ex < 2t )]

Check separately that this is nonnegative for ||z||?/4t > (14+1/27) /3 and for ||z||? /4t < (1+1/27)/
and A > exp(4/3)/b'/5.
Low dimension (8 < 2/d). Note that

-1/8

Gy(t) = (2m)~ /> <1 - @> : (tH”d/? - 1)1/B (2.11)

2
and that
1/8 _
i =2e,0 = @m (1 - %) ; <1 - %) (e 1) e
= (5-3)a-eeaay
< (% - d> Galt)t for ¢ > 21/(1-584/2).

Hence for ¢ > 21/(1=74/2),

Lgu(t,z) = { %—Gﬁt ”8t|i + bAPt PG 5(t) P exp <—ﬁ%%>] (2.12)
> uft, )H B+”§L|2+bAﬁ( )5d/2(1—5d/2)exp< ﬁ;”gyzﬂ.
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Check separately that this expression is nonnegative for ||z||?/8t > 2/ and for ||z||?/8t < 2/ and

4> 2'/5 exp(4/)
= (2m)72(1 — Bd/2)Y/5p/B /A

O

We continue by giving sub-solutions uw. Recall that p;(z) is the heat kernel. We define for
a € (0,(86)/7),
u(t,r) = api(z) Ga(t) . (2.13)

Lemma 2.5 (Sub-solution) In any dimension fort > 1,

Lau(t,z) <0, r € R (2.14)
Proof We calculate
1
Lau(t,z) = y(t,x)Gg(t)*B <baﬁpt(m)5 - Ept(O)B> <0, (2.15)
where the inequality holds since a < (8b)~'/5. i

Recall ¢ from (1.15).

Proposition 2.6 Let d € N and 0 < 3 < 1. Let f € CIH(R?), and let u(t,z; f) the solution of
Lgu =0 with u(0,-; f) = f. Then there exist constants a, A, to > 0 such that

ad(t/2,z) < u(t,z; f) < Ap(4t, ), z€RY, t>t. (2.16)

Proof Upper bound, low and critical dimension. Assume 8 < 2/d. Let @ and ¢, as in Lemma 2.4
with A’ (= A in the notation of (2.7)) large enough such that f(z) < u(tp,z), = € R¢. By the
maximum principle,

u(t,z; f) < Tt +to, ), zeRY, t>0.

Note that there exist constants A,C' > 0 such that for ¢ >ty (note that Gz(t)° < 1 if 8 =2/d),
Ap(4t,x) > Co(2(t + to), ) > u(t + to, x).

Upper bound, high dimension. Assume (§ > 2/d. Note that by (1.18) there exist constants
¢, ¢’ > 0 such that
Ap(4t, ) > Ac'py(z) > Acpry (z), for t > 2.

Choose A large enough such that Acp;(z) > f(z). Note that
La(Acpi(z)

) =
Hence by the maximum principle Acpri(z) > u(t, z; f), t > 0.
Lower bound. Note that there exists a’ > 0 such that for u of (2.13) with & instead of a

b(Acpy ()7 > 0.

u(4,z; f) >u(2,z), zeR.

Arguing as above, another application of the maximum principle yields that for some ¢ > 0, a > 0,
w of (2.13) now again with a, and for t > 4,

u(t,z; f) > u(t — 2,z) = cop(t — 2,z) > ap(t/2, ). (2.17)

O
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With Proposition 2.6 in hand we are able to prove the extinction and explosion in Theorem 1. It
is, however, more subtle to show instability. Here we need better lower bounds for u that reflect
the clustering in low dimensions. Roughly speaking the picture is as follows. Let ¢ > 0 and
B € B(R?) bounded. For ¢ large with high probability there is no particle in B: n;(B) = 0. With
a small probability, 7:(B) > 1/¢ and there is no intermediate regime. Hence for large ¢ with
overwhelming probability, e~ (8) is either 0 or close to 1 implying that e~ (B) x5 e~ (B)  This
suggests that for given ¢ > 0 and indicator function f = Ip for ¢t > 0 large enough we should have
u(t,z; ef) = u(t,x; f). (Recall that u(¢,z; f) is the solution of Lgu = 0 with u(0,z; f) = f(z).)
This should carry over to f € Cf (R?) by approximation.

For our purpose of showing instability in Theorem 1 it will be sufficient to give a lower bound
for u(t,z; ef).

Lemma 2.7 Let 3 < 2/d and f € CI+(R?). There exists a constant c; > 0 such that for e > 0
and t large enough,

ultyzief) > erolt/2,2) (2.18)
Proof Note that there exists a constant c} € (0,1) such that

cpp1 < (p2 * f).

Hence by Lemma 2.3 and Lemma 2.2 (and the semigroup property of u (1.10)),

u(t,z;ef) = u(t—2,x;u(2,-;5f)) (2.19)

> ut =2, (1+ 2082 | £I1Z) 7 e (2 + )

> C? “(t_27m55p1):

where c?c = c} (1+2bB ¢ ||£112,)~"/% > 0. Now we use two different arguments for low and critical
dimension.

Critical dimension. Assume = 2/d. Here we make use of the selfsimilarity of SBM(d, 1 +
2/d,1). Let a € (0,(bB)"'/%) and let u be the the corresponding sub-solution according to
Lemma 2.5, that is,

u(z,t) = (2m)"2a -t~ (logt)~M/P exp(—||z||*/21).
Abbreviating p = exp((a/e)?/2m) we get by the scaling property (1.11) that
ult,ziepi(1) = ult,e;(2m)Pallog p) =0 pt Py (p1/2) (2:20)

= u(t,z; p"Pu(p, p'’*-))
= p"ulpt, p"*w;u(p, ))-

By time homogeneity, also u(s + -, -) is a subsolution for all s > 0. Hence u has the property

w(t +s,z) <u(t,z;u(s,-)), s,t>0, z¢cR, (2.21)

We can thus continue (2.20) by

u(t,wiepi() > pPulp(t + 1), pM ) (2.22)
(log(t + 1) +log p) /7 apii1(x)

(log(t + 1) +log p) = /% a2 p,(z) fort >1

2=yt x), fort>p+1.

(AVARAY]
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(Note that for ¢t > p+ 1, log(t + 1) + log(p) <log((t + 1)(t — 1)) < 2logt.) Combining (2.19) and
(2.22) we get that there exist ¢}, ¢}, and ¢ > 0 such that for € > 0 and ¢ large enough

u(t,z;ef) > c:}g(t —-2,x) > c‘}g(t/?,w) (2.23)
= crp(t/2,z).

Low dimension. Assume 8 < 2/d. We make implicit use of the fact that SBM(d, 1+2/d, 1) has
a density in the low dimensions. Recall from (1.13) that u is the Laplace transform of SBM. The
existence of a density of SBM is known to be equivalent to the existence of a smooth solution u to
Lgu = 0 with a delta distribution dy as initial condition (see Fleischmann (1988)). More precisely,
u(t,z;00), t > 0, z € R, is the solution of Lgu = 0 such that for h € CF(R?),

lim [ u(t,z;d0)h(z) de = h(0).

t—0

Brezis, Peletier and Terman (1986) show in their appendix that there exists ¢y > 0 such that
u(t,x; ) > %pt(m), zeRY, 0<t<t.
Note that the maximum principle implies
u(t,x;00) < pe(x), zeRY, t>0.
Hence by Lemma 2.3 for t + s > to (note that ||2py, ||co = 1(27te) ~%/?),

U(t,l‘;ps(')) Z u(t+s,m;50) (224)
= u(t+ s —to,z;u(te,-;d))

1
> u t+3—t0;ﬂf;§1)t0('))
1 - - ~1/8
> 5(1+2 BbB(t + 5)(2mto) ﬁd/Z’) Ders ().

Let ¢} = (1 +277bp(2mto) ~#4/2)~1/. By the scaling property (1.11) and by (2.19) there exists
¢ > 0 such that for ¢t > g=1/(1/6=d/2),

U(t,l’;Ef) > C?U(t— 2,1‘;6])1(')) (225)

2
L <1 _ ?t—l/% : tl/ﬁst‘d/2p1/t(')>

_ 2
> Py (1—;,t 2 pm(-)>
> cic} t_l/ﬁplfl/t(t_lﬂx)
> Cf¢(t/2,1‘).

Proof of Theorem 1

We do the proof only for (¢;) = (¢:) SBM(d, 1+ §,b). An easy application of Jensen’s inequality
in (1.12) and (1.13) then yields the claim for BBM(d, 1 + 3, b).
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To prove part (i) note that £[(;] 22§, is equivalent to

liminf Blexp(—(G, )] =1, f € CFH(RY). (2.26)
(oo}
However, for such f, by Proposition 2.6, there exist a, 4 > 0 such that

lim inf Blexp(~A(Go, 6(t,)))] < liminf Bexp(—(Go,u(t, - /)] (2.27)
= liminf Efexp(~ (G, /)
< limiof Elexp(~a(Go, ¢(t, )]

(o, ut
(Gs f)

These expressions are equal to 1 if (and only if)

(Co, o(t,-)) Z%0 stochastically. (2.28)

This proves part (i).
Now assume that (2.28) does not hold. We have to show that ((;, f) is stochastically unbounded.
This is the case if and only if

lim sup hmlnfE[exp( (Cef))] < L. (2.29)

e—0

By Lemma 2.7 there exists a constant ¢; > 0 such that the Lh.s. of (2.29) is dominated by
lim inf Blexp(—c¢ (o, ¢(¢,-)))], (2.30)
t—o0

which is strictly smaller than 1 by assumption. Hence (; is unstable.
Assume that the assumption of part (iii) holds, i.e., £[{Co, (7, -))] => dco. The assertion that
(¢ explodes is equivalent to

liirisong[exp(—Kt,f))] =0, (2.31)

for all f € CH*(R?). This however can be shown with the aid of Proposition 2.6 as in the proof
of part (i). i

3 Proof for the high dimensions

Bramson, Cox and Greven (1997) give a proof for Theorem 2 in the case 8 = 1. Most of their
proof works without any changes for all 8 € (0,1]. We do not repeat their entire proof here but
only give an outline of their strategy and proofs of the lemmas that needed (minor) modifications.

Bramson, Cox and Greven (1997) use Proposition 2.6 to show that if ¢, is stable, then (1o, p¢(+))
is stochastically bounded (as ¢ — 00). They infer with the aid of Lemma 3.1 below that if L[]
is invariant, then for f € CF(R?) and 2 € R?,

Elexp(— (¢, f(z + )] — Elexp(— (v, £))] =5 0. (3.1)

Since the left-hand side of (3.1) does not depend on ¢ (by the assumption that L[] is an invariant
law), we know that L[¢] is translation invariant, hence Proposition 1.2 holds.

A standard argument now yields the claim of Theorem 2.

We only give the proof of Lemma 3.1 since it is here where small changes have to be made to
cover the case 3 < 1.

For p > 0let B(p) = {x € RY, ||z|| < p} denote the ball with radius p centered at the origin.
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Lemma 3.1 Let ¢ > 0 and 0 < M < 1/4e. Let f € CIHt(R?). For t large enough and all
x1,%2 € B(et) with ||z1 — x=2|| < M,

u(t,z1; f) <exp (8\/M—8/ﬂ) u(t, x2; f). (3.2)

Proof Step 1. We show that for z € R* and ¢t > 0,

e—25/8,, (5t zu((1 = &), ,f)) <ult,z; f) < u(ét,m;u((l —O)t,- ;f)), (3-3)

where v is defined as in Lemma 2.3. The right-hand inequality follows immediately from the
maximum principle. For the other inequality we proceed as follows.
Fix ¢ > 0. Define the linear operator Kz for smooth functions w(s, z) by

1 2
Kpgw = 0w — A —
pw = Osw 5 w+ mw
By (2.5) for s > t/2,
Kgu(s,z; f) 2 Lgu(s,z; f).

Let w = w(s,z; f) be the solution of the Cauchy problem Kzw = 0, w(0,- ;f) = f. By the
maximum principle (applied to Kg), w(dt, z;u((1 — d)t,- ;5 f)) < u(t,z; f). Note that (as in (2.6))
w can be represented as

5t o
w(dt, z;u((1 —0)t,-; f)) v(0t, z;u((1 — 0)t,-; f)) exp (—/0 B ds) (3.4)
= v(dt,z;u((1 = 0)t,- 3 f))e™ /7.

This however yields (3.3).
Step 2. Finally we show the assertion of the lemma. Let z € B(et). We write

v(6t, z;u((1 =)L, -5 f)) = Li(z) + L(z) (3.5)
= / pst(z, 2)u((1 = 6)t, z; f) dz + / pst(z, )u((1 = 8)t, z; f) dz
B(4et)

B(4et)e

An easy estimate using ||z — z|| > 3¢t for © € B(et) and z € B(4¢et)¢ and Lemma 2.3 yield for ¢
large enough,

IQ(ZE)

IN

/ dz pi (. 2) / dy por_syi(2,9) F (9) (3.6)
B(4et)© Rd

(216t) =2 exp(=92t/2)[| fIl1 < exp (=4I f 1

IN

We obtain u(t,z; f) > exp(—3&2t)||f||1 for t large by a similar estimate using the other inequality
in Lemma 2.3. Hence

I(z) < exp(—e*t)u(t, z; f) (3.7)
Let z1,x2 € B(et) with ||z1 — 22| < M. For z € B(4et) clearly
Iz = zo|* = llz —@1ll* = llza — @1l + 20z, 22 — 1)

lzo = z1|| - |22 — 1 ]| + 2||2]| - |22 — 21|
M -2et+2-4et - M = 10eM.

IN N
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Hence psi(z,21) < exp(5e M /6)pst(z, z2). Together with (3.3) we get (recall 6 = vVeM)

hie) < expGM/0) [ pulau((l - d)t,z: 1) do (3.8)
B(4et)
< exp(5eM/0)v(dt, za;u((1 —)t, - ; f)) (3.9)
< exp(20/6 + 5eM/)u(t, x2; f)

exp(76/B)u(t, x2; f).
Together with (3.7) this implies for ¢ large
u(t,1; f) < exp(86/B)u(t, z2; f).

4 Proof for the diffusive clustering

In order to show the weak convergence statement (1.26) of Theorem 3 we will show convergence
of the Laplace transforms in the case of SBM. This is the content of Proposition 4.1 below. The
case of BBM will follow by a comparison argument using the embedded particle system and the
law of large numbers (here a > 0 is needed).

The log-Laplace transform of the L.h.s. of (1.26) for a test function f € Cf (R?) is (recall (1.13)
and (1.20) - (1.22))

—log E®E NMexp(—(, )] = —log 180 Aexp(—(G, t724/2 f (772 )))] (4.1)
= —log B0 Nexp(—(¢;, (logt) "/t /2 f(1=2/2. )))]
= ((logt)'/7 - Xult, ; (logt) /P2 f(¢=/2.))).
Using the scaling relation (1.11) (with p = ¢t) this quantity equals (recall 8 = 2/d)
= ((ogt)/P . X, t=oU 2t = =/ . (logt) /P f)) (4.2)
= ((logt)/7 -\, u(t'~*, - ; (logt) /7 f))
= (1-a) /8 <(logt’)”5 Nu(t, - (logt) A (1 - a)”ﬁf)> ,

where we put t' = t!=%. We have to show that this expression converges as ¢ — oo to (recall
(1.23), (1.25) and that ¢ = (27(1 + B)1/9)~1)

—log B'[exp(—Ze,1-a) (M )] = (Bea(l—a) + (A, f) 7) /7 (4.3)
- (1- a)_l/ﬁ(% +(O,(1— a)1/6f>—ﬁ)—1/ﬁ_

Comparing this with (4.2), it is clearly enough to handle the case e = 0 This is the content of the
following proposition.

Proposition 4.1 Assume 3 = 2/d and let u be the solution of (1.8). For f € CI*(R?), z € R,
—oo < a<1, ands >0 the following hold.

() Jim (tlogt)/Pu(t — s,#'/%2; (log ) /7 ) = (2m(Bes + (A, £y~ T/ AeT I,
() Jim ((ogt)/? A u(t,; (logt)"/7f)) = (Beg + (N F)7) 7P



INFINITE VARIANCE BRANCHING MODELS 17

4.1 Proof of Proposition 4.1

The proof of Proposition 4.1 copies the proofs of Lee (1991), Theorems 2.1, 2.3, and 2.4. Lee’s
results cover only the case 8 = 1 but can easily be adapted to 8 < 1. For the sake of completeness
we give the proof in detail.

Strategy of the Proof
Recall that b = 1 and that the (non-linear) operator Lg is defined by

1
Lsu = du — §Au + ulth.
As indicated by Proposition 2.6, a solution of Lgu = 0 should be “close” to multiple of
(t, ) =t~ (logt) ="/ exp(—||l|*/2t).

However, in Proposition 2.6 we had no control of the constants a and A of the upper and lower
bounds of u(t, x; f) in terms of ¢(¢, x). (The point that ¢ in the upper and lower bounds is evaluated
not at time ¢ but at ¢/2 and 4t respectively could be repaired rather easily.)

More precisely, we would like to find a constant 63 such that for e > 0 and ¢ large enough

05(1 — —-1/8 <_W> .
5(1 =) (tlogt) ™/ exp ( ~12 ) <l f)

2
< 31 +¢)(tlogt) ™ /P exp (—%) ) r € RY.

We make the following ansatz to determine 63. For 8 > 0 define u by
U=0¢+t '/ 0logt)”HVB g1/ %), (4.4)

with a “smooth” function g.
Let H = —(5I + ;A +3V) and

fo(t,x) = 67 exp(—(L + B)|2]* /2t) %exp(—llﬂfIIQ/?t)-

Then
Lt = (tlogt)~M+YO) | fo(t, x) — (Hg)(t—l/%)] + o((tlog t)~(1+1/9),

Hence we search for 6 such that Hg(z) = fs(1,z) has a solution g. In Lemma 4.2 we construct a
right inverse G' of H on a certain subspace V C Cy(R?). It turns out that fs(1,-) € V if and only

if
0= 05 = (5(1+06)/)". (4.5)

The problem with this ansatz is that we can not control the tail behaviour of g(z) at infinity.
So now that we have determined 63 we come back to the main idea of constructing sub- and
supersolutions to Lgu = 0. We try the following ansatz:

ult,z) = (05 —¢) o(t,x) +¢ /9 (logt) " /Fg(t7 1),

(4.6)
ult,r) = (05 +¢) d(t,x) + ¢t~ /B (logt) "1 1/BgH(t=1/2g),
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where the functions g~ and g+ will be determined in terms of G. In Lemma 4.3 we control the tails
of g~ and g and in Lemma 4.4 we show that these u and 7 are indeed sub- and supersolutions to
our problem.

The second step in the proof of Proposition 4.1 is to deal with the fact that we rescale the
initial value of our Cauchy problem, i.e. that we start u in (log t)*l/ﬁf. We use our new estimates
on the (non-rescaled) behaviour of u to give a refinement of Lemma 2.7 that also contains an upper
bound (Lemma 4.7). First we reduce the problem to initial conditions of the form a p;, a > 0,
(Lemma 4.6). Next we use a similar scaling and comparison argument as in the proof of Lemma 2.7
to deal with general initial data.

The conclusion of part (i) of Proposition 4.1 is then easy. Statement (ii) follows by a simple
dominated convergence argument.

The Details

We start by giving a right inverse G of H = —(%I + $A + 2V) on the linear space V generated
by functions R? — R of the type

2 2
R Y o WP 1
Gap(T) =a exp ( 50 b exp TR a,b> 0.

Define for s > 0 and y,z € R?,

vy = 51/2z||2>

Glo02) =57 2n(1 =) 2 exp (-0

Lemma 4.2 We can define a linear operator G : V — Cy(R?) by

(Gqap)(y) = /0 g G(s,Y, 2)qap(z) dz ds.

G is the right inverse of H on V, that is, HG = idy .

Proof It is easily verified that the integral converges. Hence G is well defined. Now let

t x—z||?
v(t,z) = /0 /}Rd(Qn)’dﬂ(t —5)" 2 exp <—%> s 2q, 4 (s7V%2) dz ds.

Note that the integral converges, that v(1,-) = Gg,, and that
1
<(9t - §A> o(t,z) =t~ " 2qt %),

By the substitution s’ = ts we obtain v(t,z) = t~%?v(1,t7'/2z). Thus (9; — +A)v(t,2) =
t= 1742 (Ho(1,-))(t~/%x). Hence q,4(y) = Hv(1,y) = H(Gqa)(y) as desired. 0

Note that we can find a function g such that Hg = fy(1,-) if fo(1,-) € V. This, however, is
equivalent to # = 03 with 63 defined in (4.5)

The next aim is to construct the functions g~ and g* of (4.6) and to give upper and lower
bounds for ¢~ and g*.

For 0 <e < min(%,Gg/Q) (where % = oo if # =1) define

q (%) = p~q1,1/148)
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and
q+(m) = p+q1+k5,1/(1+ﬁ)7
where
- (65 —e)'tF
+ o+ . (95 +E)1+B

and k = 3%/(263). Now let g~ = Gq~ and g+ = Gq*.

Lemma 4.3 There erist constants 0 < m, M < oo such that for all z € R?

—m exp <—@> <g (z) < Mexp <—2(”1mfg)> ; (4.7)
oy () gt o (- Y 4

Proof We only give the proof of (4.8). The proof of (4.7) is similar but easier.
By the substitution y = s'/2z and the Chapman-Kolmogorov equation we get

gt (z) = p+/01ds /Rddz s7H2r(1 —5)) "% exp (-%) (4.9)

x {(1 +ke) *?exp (—%) (14 8) 2 exp < (1+ 8) ||Z||2>]
= pt /01 ds st [(1 + ske) "2 exp <_2(1Hi“7||:k€)>
_ <1_ li_5ﬂ>d/2eXp (—%)} _

Choose a € (0,1). Then clearly fal < ds < (fal s71(1 + ske)~%/? ds)exp ( (”I” 5)) By partial

integration we see that the foa term equals

¢ d(1 + ske) + ||=||* [|z]?
ds logs |k S — 1.1
/0 s Ogs{ 21+ skeyzrd2. TP\ T2 + ske) (4.10)

NN O = g O
1+ﬂ R 24+d/2
2(1- ) 2 (1-15)

+(log a) {(1 +ake) "2 exp <‘2(1”+ijs)>

(i) gt
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Now we are able to construct our sub- and supersolutions u and .
Lemma 4.4 Let 0 <e < min(%,%/?) and g~ and gt as in Lemma 4.8. Define u and u by
u(t,®) = (05 —¢) o(t,x) + ¢~/ (logt) " = /Pg (17 ?a),
u(t,z) = (65 +e) dt )+t (logt) T g (47 ),
Then Lgu < 0 and Lgu > 0. Furthermore for t large enough and all x € R?

0< (09— 20) d(t,) <ult,) < O (tlogt) ™7 exp (—%) (4.11)

0<bsdt,x) <u(t,z)< (0g+2¢) (tlogt)™/Fexp (—%) . (4.12)

Proof From (4.7) and (4.8) it is clear that (4.11) and (4.12) hold. In order to show that u and @
are sub- and supersolutions we have to give upper and lower bounds for Lgu and Lg@. Note that
for a,b € R, a > 0 and |b|/a small enough |(a + b)'T7 — a'*?| < 4a°b. We use this estimate to
show that

Lpu(t,z) < Lg((0s —e)o(t,x)) + (tlogt) ™ =/ (Hg™)(t7/x) (4.13)
+4M (0 — €)p(t, )Pt~/ P (logt) "+ ~+/F exp (-%)
+m(1+1/8)t P (log ) 72 1/F exp(—||z[|* /2t)

= (tlogt)~1-1/ {(gﬁ _ )P el /2t _ 9ﬁﬂ— € emllel/2t | = p=loll /2t
—p (1 + ﬂ)l/ﬁe—(lJrﬁ)Hsz/?t] + Ot Y8 (log t) =21/ B ll2ll? /2t

— (tlogt)~'=1/5 <p— _ %_5—5> e=l12I2/2t 4 O(1=1=1/8(10g £)=2=1/B=llzI*/2ty
< 0,

93—6

for ¢ large enough, since p~ — 7 < 0 for 0 < e < 63.

Similarly, for ¢ large,

Lgu > Ls((0 +)g(t,2)) + (tlogt) /0 (Hg™) (1™ /?x) (4.14)
—4m((B5 + €)p(t, 2)) Pt /8 (log )11/ Be Il /2t
—M(1+1/8) ("B (log t) =21 /B~ llzll*/2t(1+ke)

—1-1/8[ + —dj2x|?/2t(rke) _ OB FE o
(tlogt) pT(1+ ke)~4?e e ]
+O((tfl*l/ﬁ(log15)*2*1/f7’e*||ac||2/2t(1+kg))
> 0,

since pt (1 + ke)~ %2 — % > 0. To see the latter inequality, note that

- 1 g _ B e 1 88 32
1+k5_1+255/95_1+ﬂ 05 +25 0 e <1+ﬂ[95+s] .
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This inequality holds since € < 63. Thus

(03 +¢)°
(14 p)L/8

as claimed. 0

1

(05 +¢) (1+ks)—1/5—5 >0,

A simple consequence of Lemma 4.4 is the following result on the asymptotic behaviour of w.
Lemma 4.5 For f € CH+(R?) the following holds,
1tlim (tlogt)*/ Pu(t, t*/%x, f) = 65 e*HzH2/2, r e R
—00

Proof The proof of this statement is simple with Lemma 4.4 at hand. Since we will not make
use of this Lemma we omit the details and refer the reader to Lee (1993), pages 304/5. O

So far we have considered only a fixed initial condition u(0,+; f) = f of the Cauchy problem
Lgu = 0. The next aim is to change the initial condition to (log#)~'/?f.
Define

b(z;f) = infliminf (¢tlogt)"/Pu(t — s, t"/%x; (logt) /7 f)
§>0 t—oo

and

sup lim sup (tlogt)/Pu(t — s, t'/%x; (logt) /P f).

s>0 t—oo0

B(z; f)

In order to proof Proposition 4.1 we will give upper and lower bounds for B and b respectively.
The first step is to reduce the situation to f(z) replaced by (A, f)(27)~ %2 exp(—||z||?/2). Recall
that p; is the heat kernel.

Lemma 4.6 Let f € CIT(R?). For x € R? the following inequalities hold:
B(x; f) < Bz (A f) p1)-

Proof Note that for z,y € R? and t,6 > 0,
||:L’||2 _ ||:L’_y||2 1 . 1+6||y||2
2t(1+9) 2t 26 '

Hence for K C R? compact and € > 0 we can find § > 0 and t, > 0 such that for f € CF(R?)
with supp(f) C K,

<

pex f < (L4+e) (A f) Passyts t > to.
Similarly we get 6 > 0 and #y > 0 such that

pex f>(1—¢) (A f) pa-s)t t > to.

Hence if we let d; = ¢ || f||Z? - logt, we get with Lemma 2.3 and Lemma 2.2 that for d; > to,
u(t — s, tY2z; (logt) 1P f) = u(t — 5 —dy, %2 u(dy, - ; (logt) /7P f))

u(t — s —dy, '35 (1 - ¢) (logt)™'/? (pg, * f))

v

> u(t — 85— dt,t1/2x; (1- 5)2 (log t)—l/ﬁ (N f>P(1—5)dt)
> (1-—¢)? u(t —5— dt,t1/2x; (log t)*l/ﬁ (N f>P(1—5)dt)
> (1—¢)? u(t — s —8dy — 1,822 (log t)~1/9 ()\,f)pl).
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Since d; < t, we obtain
b(w; f) > (1 —e)? b(a; (N, f) pr).-

Now let ¢ — 0 to obtain the claim. The claim for B follows analogously using the opposite
inequality in Lemma 2.3. |

Now we give the bounds for b(z;a p1) and B(z;a p1). The result is a refinement of Lemma 2.7
and will be obtained by a similar scaling argument.

Lemma 4.7 Fora > 0 and x € R? the following inequalities hold

a)? 1/

b(aaesn(-l - 17/2) 2 (F 2055 ) -exn(llel/2
o) \'/P

B (maexpl=ll - 17/2) < (2 20055)  esal-lalP/2)

Proof

We do the proof only for the second inequality. The proof of the other inequality is quite
similar.

Recall from (1.11) that

u(t,z; 0P £(p1/%) = p"Pulpt, p' a5 £), p> 0. (4.15)
Thus for s > 0, ¢t — s > 0 large enough and p = p(t) = #(00)°/” e have by (4.12)

u(t — s,z; (logt) ™ Paexp(—| - [I*/2)) (4.16)
= u(t—s,2;05(logp) /7 exp(—| - |I*/2))

u(t — s,@; 0" (p, p'/?))

p"Pulp(t — ), p' P a(p, -))

P Pu(p(t — s+ 1), p' ).

IN

IN

We infer that for ¢ > 0 uniformly in z € R?,

sup lim sup(t log )"/ %u(t — s,t/%2; (log t) "/ Paexp(—|| - ||*/2)) (4.17)
s>0 t—oo0
< suplimsup(tlog )"/ p"/%u(p(t — s + 1), (pt)'/%z)
s>0 t—o0

< suplimsup(tlogt VBt —s4+1)"1/8 log(p(t —s+1 —1/5g
B

s>0 t—oo

el

1 _

x( ”)e"p( 21 +e)(t —s+ 1)

. logt /6 9
= 1 -2 _

suptimsup (B ) 650+ 6)exp(— /201 -+
1/8

_ 2 (6a)°
= ool 200 49) (20 )

Now let ¢ — 0. O
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Proof of Proposition 4.1

The proof of Proposition 4.1 is now easy. Combine Lemma 4.6 and Lemma 4.7 to obtain part (i).
In order to prove part (i) note that by Lemma 2.3

(tlogt)'/Pu(t,t'?z; (logt)™'/% f) < t'/8(py = f)(t"/x)
= (pox (/P F(t1/2))) ()
< cp pa(x) fort>1
for some ¢y > 0. Hence dominated convergence yields the claim. O

4.2 Proof of Theorem 3

First consider the case where (1;) is SBM(d, 1+ 2/d, 1). Note that here the assertion is immediate
from Proposition 4.1, (ii), by (1.13) and the scaling relation (see (4.2))

LOAEIG(72)] = LA (G- ()] (4.18)

A more detailed discussion precedes Proposition 4.1.
Now assume that (¢) = (1) is BBM(d,1 + 2/d,1). The link to the SBM is the embedded
particle system (an idea that goes back to Gorostiza et al., Lemme 1):

“For fixed time horizon ¢, poissonizing the initial state m first and then running
a BBM (7;) is the same as running SBM ((;) with initial state m and then (4.19)
poissonizing the random population (;.”

To make this precise we define a new random measure X; such that £[X¢|(] = H((;) (recall that
‘H(m) is the law of a Possion point process with intensity measure m) . Then (4.19) says that for
m € M(RY),

LH ] = £7[X). (4.20)

To check this let f € C(R?). Then (recall (1.12) and (1.13)),

E*(exp(—(m, )] = exp (— [ mda) (1~ E™fexp (—<nt,f>>]))
= exp(—(m,u(t,-,1 —e 7)) (4.21)
= E"[exp(~(G,1—e 7))
= E"[exp(—=(Xy, /)]

Now for A € B(R?) bounded and « > 0 by the law of large numbers,

B8 A [0 2 log #) 77|, (19/2 4) — (192 4)]) 2 0. (422)

4.3 Proof of Theorem 4

Note that as above, the case of (¢;) BBM can be derived from the case (1;) SBM. Hence we will
now assume that (¢:) = (¢;) is SBM(d, 1+ 2/d, 1).
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The idea of the proof is an induction over the length of the tree T. Recall the heuristics
given in the discussion preceding Theorem 4. The key point in the induction is to show that

the “important” information about (;_yo a2 goraa is already contained in Cy_ga ([—£%/2,£/2]4).
7t& ’t&

We do so by constructing a coupling of ((;—ta4s)s>0 with a SBM(d, 1 + 2/d,1) (¢?)s>0 started in
t=2¢, ya ([—12/2,1%/2]7) - X. We show that the coupling is successful in a certain sense within
time s = .

We prepare for the proof of Theorem 4 by stating a coupling lemma and a comparison lemma
both taken from Klenke (1997) (stated there for the case § = 1 only). Note that we give a new
proof of the comparison lemma since the second moment used in Klenke (1997) is not available
here.

Lemma 4.8 (Coupling) Let S > R > 0. Consider (!)s>o SBM(d,1 + 2/d,1). Assume that
L[] is translation invariant and that e > 0 and 0 < p < oo are chosen such that

B¢ (0.0 | = »
E| [R7G (0, R)) - S7IG(0,9))] | < =
B[ 160,89 - ¢ (SG+0,)M)]] < &5 Vzel[-1,1)"

Then there exists a coupling (C},(?)s>0 (i-e., (C2) is also SBM(d,1+2/d,1) and both processes are
defined on the same probability space) such that

LIG |6l = 576 ([0,8)%) - A (4.23)

and

E[l(¢s = ¢)

< Am)-

de +de D72 40, d pRsl/Z] , (4.24)
™

where B € B(R?), B C [0,5)? and D = dist(B,R% \ [0, 5)9).

Proof This is Corollary 3.7 in Klenke (1997). In fact the proof given there does not rely on the
finite variance available there. |

With the tool of the coupling lemma we are able to give a proof of the following lemma that
does not rely on second moments.

Lemma 4.9 (Comparison) Let a € (—oo,1] and let a(t),b(t) =~ t%, i.e., lim; % =
lims oo lolig(tt) = a. Then
/B _ — _ o)
B0 [(log ) 71/7|a(t)~1G([0,a(t) ") - b)) =G (0,6t F 0. (4.25)

Proof The main tool for the proof is the coupling lemma, Lemma 4.8. We prepare for the use of
it.

By the basic scaling relation (4.18) we may w.l.0.g. assume o = 0. Also we can restrict ourselves
to the case b(t) = 1 and a(t) | 0, loga(t) < logt. Since
/8

B0\ [(log 1)~1/?|5G,((0, 5)") ~ B0, Y]] =3 0 (4.26)
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for any R,S > 0, we may find R = R(t) | 0, S = S(t) 1 oo such that
60" 2 (log 1) /71S(5) G 1 ([0, S(H)") = R() "G ([0, RO)II =2 =F 0. (4.27)

By a similar argument we obtain (maybe by enlarging e; and changing R(t) and S(t) a little)

sup B0 "N (1og 1) VA5G 1 ([0,9)) — G 1 (S(z + [0, )] <2 ZF 0. (4.28)
z€[0,1]4
(For example, for fixed S choose N € N large and take the maximum over z € {0, %, ..., 1}, This

term clearly vanishes as t — co. The error term of the two maxima results from the (less than)
N4=13% blocks of size [0, %)¢ at the surface of (z +[0,1)%) and is thus bounded by 3%+. Now let
S = S(t) and N = N(t) increase slowly to 00.)

We apply the coupling lemma 4.8 to obtain a SBM(d,1 + 8,1) ((?)s>¢—1 with initial state
LG 116 1] = $#) 161 ([0, 5(5)) - A and

BO50 N(og )12 - )| I < NB)er+d e 42/ AR RO, (4.29)

where B € B(R?) is bounded and D = dist(B,R? \ [0,S(¢)]¢). In particular, for M < oo there
exists 6 23 0 such that for any Borel set B C [—M, M]¢

50 N (log )71 (¢t - ¢)| I < 5A(B). (4.30)

Now fix a value p = (logt)"*/2S(t)~%¢_1([0,S(t))?). According to Theorem 3 (and the basic
scaling)

(log #)~YPa(t)=2¢2([0,a(t))") =% p (4.31)

and
(log )~ /2¢2([0,1)%) =5 p

A simple uniform integrability argument yields
E 50" N (log 1) 71/)a(t)~9¢/([0,a(t))?) - ([0, D)D) = 0. (4.32)

Combined with (4.30) the proof is complete. O

Proof of Theorem 4

Recall that we do the proof for the case in which (¢) = ({) is SBM(d,1 + 2/d,1). The proof is
almost identical to that given in Klenke (1997). The only “real” difference to the case 8 = 1 is
the modified proof of Lemma 4.9 given above and some changes in the constants. However for the
sake of completeness we give the proof here in detail.

We do the proof by induction over the length of the tree T. For T = {(}} this is the assertion
of Theorem 3. Now assume that the claim has been shown for all trees shorter than T.

The idea of the proof is the following. We introduce a time scale L(t) ~ t4(?) and couple ()
for s > t — L(t) with another process (¢2). This process shall have initial configuration M (p),
where p is the empirical population density of Ctl_L(t) in a box of length = tA0/2, L(t) will be
chosen small enough that the evolutions of the subtrees (resulting from eliminating () from T) are
approximately independent. On the other hand L(t) has to be chosen large enough so that the
coupling of Lemma, 4.8 with R(t) ~ t4(?)/2 is successful. Here a the details.
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Let b = max{diam(B*®), e € T}. Let d; | 0, t — oo such that

tACAD =2 < ge — ] || — b/ 4 $AN/2) w33)
o — af || + b(tA)/2 4 $AD/2) < %t(A(eAf)ert)/z

IN

for all e, f € T. We may assume that t% = co. Let a := A(D) and define

S=S8(t) = tltd)/2
R=R(t) = o342
L=L({t) = t*%"
Let
Bf = af +t4(9)/2ge (4.34)
and
B, = B (4.35)
ecT

By shifting X = (zf, e € T), if necessary, we can assume that B; C [0,S)¢ for all ¢ > 0 and that
L% . dist(By, R\ [0, S)%) =5 oo. (4.36)

Apply Corollary 4.8 with ¢§ = ¢ r), s = L(t), p = (logt)'/? and with ¢ = (logt)'/%e;, where

€t 2% 0. This last choice is possible due to Lemma 4.9. Thus we obtain a coupling (¢}, (?)s>0
with £[¢} |(sl] = M(S~%¢}([0,5)%)) such that there exists a sequence &; J 0 with

E(los)'/7x H@@ - E,%(t))(C’)H <8 -AC) YC € B(RY) bounded. (4.37)
So all we have to show is

° 1/8 _ _ e e e e
clos?) *{(logw VA (g (B)) ]tgﬁl (OB Zoae,heer] - (439)

ecT

By Theorem 3 we know that
L0 [(log )~/7 5163 ([0,9))| 25 £ [Z1-ae ) (4.39)

Hence it suffices to show that for p > 0,

o 1/8 _ —Ale e €
Ep(l gt) A |:(10gt) 1/8 (t A( )d/ZCL(t)(Bt))eeTr] tg LP I:(Z(a—A(e))Cﬁ)eET] (440)

-1/8

= L I:(al/ﬁz(elfA(e)/a)Cg)eevﬂ‘} .
In the second line we have used the scaling property of (1 + 8) branching “diffusion”.

Let T; = {(j,l2,...,1n) € T,n € N}, j = 1,...,J, be the partition of T into subtrees T}
according to the offspring of the root (T = {#} UT; U---UT,). In order to prove (4.40) by the
induction hypothesis it suffices to show that

((ogt)=V/ot= A2 ) (Bf)) yoq » G =1,---0

4.41
are asymptotically independent random variables. ( )
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For each j = 1,...,J, fix one e; € T; and let C; = C;(t) = z;° + [-R(t),R(t))? and Cp =
R\ (Cy U---UCy). Then for t large enough we have C; N C; = ) for i # j. Let

A]' = Aj(t) = in% diSt(Bf,]Rd \C])
ect;

Since A : T — I is strictly decreasing, we have A;(t)/+/L(t) s S
Let (x%)s>0, 4 =0,1,...,J, be independent SBM(d,1+2/d,1) with initial states

xp = e, plogt)/PN,  j=0,1,...,J.

We can assume (; = X% + -+ + x7. Now for j = 1,...,J and e € T},

J
B|(ogt) o402 3 v (55| (1.42)
i=0,i#]

<pABY A0 [ s [ dypu (o) < pNB e (-A3/LE) 5 0.
RAC; £
Thus (4.41) holds and the proof is complete.
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