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Abstract. In this paper we investigate the cluster behavior of linearly in-

teracting Brownian motions indexed by Z2. We show that (on a logarithmic

scale) the block average process converges in path space to Brownian motion.

1. Introduction

Motivation. Many interacting particle systems in the d–dimensional space have
the property that their long–time behavior is strongly dimension dependent with
non–trivial equilibria in high dimensions (usually d > 2) and so–called clustering
in low dimension (usually d ≤ 2). In the critical dimension d = 2 some models
have proved to show a phenomenon called diffusive clustering: a suitably defined
block average process (zooming from large blocks to small blocks) converges to a
diffusion process as time goes to infinity. Convergence of the finite dimensional
marginals has been shown for a variety of models including: the voter model (Cox
and Griffeath [CG86]), interacting diffusions on the hierarchical group (Fleischmann
and Greven [FG94] and Klenke [Kle96] and branching Brownian motions and super–
Brownian motion (Klenke [Kle97]) as well as for some infinite variance branching
models (Klenke [Kle98]). However, so far for these models one could not establish
convergence in path space.

Only recently Kopietz [Kop98] was able to show diffusive clustering and conver-
gence in path space for a model of linearly interacting Brownian motions indexed
by Z2. One aim of this paper is to give a more straightforward proof and to weaken
the assumptions.

The method used in this paper heavily depends on the Gaussian structure of
the process. However, there might be some hope that one can use this process as
a prototype and employ comparison techniques to transfer the result to a broader
class of interacting diffusions.

The model. Consider the following system of coupled stochastic differential equa-
tions

(1.1) dxt(i) =
∑
j∈Zd

a(i, j)
(
xt(j)− xt(i)

)
dt + dWt(i), i ∈ Zd,

where {(Wt(i)t≥0, i ∈ Zd} is an independent family of standard Brownian motions
and a is the kernel of a random walk on Zd. We denote by a(n) its n–step transition
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probabilities. It is well–known that (to prove this one might proceed as in Shiga
and Shimizu [SS80, proof of Theorem 3.2]) there exists a unique strong solution
(xt)t≥0 of (1.1) taking values in a so–called Liggett–Spitzer space X ⊂ RZd

(given
that x0 ∈ X). This space X is defined via the following procedure (see Liggett
and Spitzer [LS81]). Fix a function γ : Zd → (0,∞) with

∑
i∈Zd γ(i) < ∞ and the

property

(1.2) sup
i∈Zd

(γa)(i)
γ(i)

< ∞.

Such a function always exists. Define a norm ‖ · ‖γ by ‖x‖γ =
∑

i |x(i)|γ(i) and
let

(1.3) X =
{

x ∈ RZd

: ‖x‖γ < ∞
}

.

For example, if a is the kernel of simple random walk, then γ(i) = (1 + ‖i‖2)−p

fulfills (1.2) for any p > d. Hence X is then a space with a polynomial growth
condition.

Here we are interested in the longtime behavior of (xt). It is known that the
system clusters if the symmetrized kernel â(i, j) := 1

2 (a(i, j) + a(j, i)) is recurrent.
More precisely, if x0 ≡ 0 then for all finite A ⊂ Zd and all K < ∞

(1.4) lim
t→∞

P[xt(i) ≥ K, i ∈ A] = lim
t→∞

P[xt(i) ≤ −K, i ∈ A] =
1
2
.

This follows from a simple computation using the second moments (see, e.g., Cox
and Klenke [CK99, Section 3.4]). Statement (1.4) remains true if we allow somewhat
more general initial conditions, for example x0 random with sup{E[|x0(i)|], i ∈
Zd} < ∞. Apparently, (1.4) does not hold for infinite A. In fact, one can even
show that almost surely

(1.5) lim sup
t→∞

xt(i) = ∞ and lim inf
t→∞

xt(i) = −∞,

see [CK99].
One concept for investigating the clustering quantitatively is to introduce block

averages. A block average value close to 0 indicates that many regions (clusters)
with only positive or only negative coordinates compensate. The block is larger
than the typical cluster. Large (absolute) values of the block average indicate
that the block is covered by one cluster. Somewhere between these extremes one
captures the typical size of a cluster. So one considers blocks of sizes that grow
in time on different scales and tries to make a limit statement about the observed
average values.

In this paper we shall focus on the situation where d = 2 and where a is the
kernel of a non–degenerate, irreducible random walk with finite moments of order
(2 + δ) for some δ > 0. We agree to denote by Q the covariance matrix of the
symmetrized kernel â, that is, Q is the 2× 2–matrix associated with the quadratic
form

(1.6) Q̃(y) =
∑
k∈Z2

â(0, k)〈k, y〉2, y ∈ R2,

where 〈 · , · 〉 denotes the standard scalar product.
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The rescaled block averages we consider are defined by

(1.7) θt(α) =
(

2π
√

detQ

log t

)1/2 1
|B(tα/2)|

∑
i∈B(tα/2)

xt(i), t > 0, α ∈ [0, 1],

where

(1.8) B(r) = {i ∈ Z2 : ‖i‖∞ ≤ r}.

Here α is a parameter that measures the scale at which the blocks grows in time.
Our main result is the following theorem.

Theorem 1.1. Assume that x0 is ergodic with a (2 + δ)th moment for some δ >
0. Let (Ws)s∈[0,1] be a Brownian motion. The process (θt(α))α∈[0,1] converges as
t →∞ in distribution in the Skorohod topology to (W1−α)α∈[0,1].

It might be worthwhile noticing that the convergence is over [0, 1] not just (0, 1].

Remark 1.2. The condition on x0 can be weakened, however this is not the main
goal here. Note that xt has an explicit representation

(1.9) xt(i) = atx0(i) +
∫ t

0

at−s(i, j)dWs(j), i ∈ Z2,

where

(1.10) at(i, j) = e−t
∞∑

n=0

a(n)(i, j)
n!

is the continuous time random walk kernel.
Hence once we have the statement of the theorem for x0 ≡ 0 we have it for any

x0 such that

(1.11)

(log t)−1/2|B(tα/2)|−1
∑

i∈B(tα/2)

atx0(i)


α∈[0,1]

t→∞−→ ([0, 1] → {0})

in the Skorohod topology. For the special choice in the theorem this follows from
the ergodic theorem.

The difficult part in showing Theorem 1.1 is showing the tightness in the path
space. To this end one usually has to compute fourth moments which in many cases
is not so simple. Here, however, for x0 ≡ 0, everything is centered Gaussian and
the fourth moments are a simple function of the variances.

Similar results as Theorem 1.1 have been obtained for the two–dimensional voter
model, interacting diffusions, and spatial branching processes. However in these
cases one has not been able to show convergence in path space but only convergence
of the finite dimensional marginals.

Kopietz was the first to show the statement of Theorem 1.1, though under
stronger assumptions, namely (4 + δ)th moments for x0. In fact, Kopietz per-
forms a painstaking direct computation of the fourth moments (this is, without
using (1.9)) to obtain tightness in the Skorohod space.

In the next section we give the proof of Theorem 1.1 that makes use of some of
the ideas in [Kop98].
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2. Proof of Theorem 1.1

As indicated in Remark 1.2, it suffices to consider the case x0 ≡ 0. In order to
show the theorem we have to show

(i) convergence of the finite dimensional distributions,
(ii) tightness in the path space.

2.1. Finite dimensional distributions. Note that (θt(α))α∈[0,1] is a Gaussian
process, thus it is enough to show convergence of the covariance function

(2.1) Γt(α, β) = Cov[θt(α), θt(β)],

to the covariance function of (W1−α)α∈[0,1], namely

(2.2) lim
t→∞

Γt(α, β) = 1− (α ∨ β), α, β ∈ [0, 1].

The key to (2.2) is formula (1.9) which yields immediately

(2.3) Cov[xt(i), xt(j)] =
1
2
Ĝ2t(i, j),

where Ĝt is the Green function of â, that is

(2.4) Ĝt(i, j) =
∫ t

0

âs(i, j) ds =
∑

k

∫ t

0

as/2(i, k)as/2(k, j) ds.

Thus we have

(2.5) Γt(α, β) =
2π
√

det Q

log t

(
|B(tα/2)| · |B(tβ/2)|

)−1 ∑
i∈B(tα/2)

j∈B(tβ/2)

Ĝ2t(i, j).

We introduce the function

(2.6) At(i) = Ĝt(0, 0)− Ĝt(0, i).

We will need the following statement about At that we prove below in Lemma 2.1

(2.7) C := sup
t≥1

sup
i∈B(tα/2)

i6=0

∣∣∣At(i)−
1

π
√

det Q
log ‖i‖∞

∣∣∣ < ∞.

Together with the well–known fact that (see Fukai and Uchiyama [FU96])

(2.8) lim
t→∞

Ĝt(0, 0)
log t

=
1

2π
√

detQ

we get from (2.7) and (2.5)

(2.9) lim
t→∞

Γt(α, β) = 1− lim
t→∞

2π
√

det Q

log t · |B(tα/2)| · |B(tβ/2)|
∑

i∈B(tα/2),

j∈B(tβ/2),
i6=j

log ‖i− j‖∞.

Using the fact that the overwhelming majority of points i, j have distance ‖i−j‖∞ ≈
t(α∨β)/2 we get

(2.10) lim
t→∞

Γt(α, β) = 1− (α ∨ β),

as desired.
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2.2. Tightness in path space. A convenient sufficient condition for tightness of
probability measures on the Skorohod space is (see [Bil68]): There exists a constant
ρ > 0 and t0 > 0 such that

(2.11) E[(θt(α)− θt(β))4] < ρ(β − α)2, t ≥ t0, α, β ∈ [0, 1].

Unfortunately, our function α 7→ θt(α) has discontinuities at those points α where
tα/2 ∈ N. Hence we cannot hope to verify (2.11) and to show tightness directly.
However this is really only a minor problem: All we have to do is to change the
definition of the block averages a little bit. In the sequel we agree to write for any
function f : Z2 → R and any u ∈ R2

(2.12) f(u) = f(buc),

where b · c is the Gauss bracket applied to both components. We also write B̃(r) =
{u ∈ R2 : ‖u‖∞ < r}. Now we define the continuous block average θ̃t(α) by

(2.13) θ̃t(α) =
1
4
t−α

(
2π
√

det Q

log t

)1/2 ∫
B̃(tα/2)

du xt(u).

It is simple to check that almost surely

(2.14) lim sup
t→∞

sup
α∈[0,1]

∣∣θ̃t(α)− θt(α)
∣∣ = 0.

Hence it suffices to show tightness for θt(α) by checking (2.11) for θ̃t(α). Recall
that the fourth moment of a centered Gaussian random variable Y can be expressed
in terms its second moment by E[Y 4] = 3(E[Y 2])2. Consequently all we have to
show is that there exist t0 > 0 and ρ > 0 such that

(2.15) E
[
(θ̃t(α)− θ̃t(β))2

]
≤ ρ|β − α|, t ≥ t0, α, β ∈ [0, 1].

Define the covariance Γ̃t(α, β) anologously to (2.1). It is clear that α 7→ Γ̃t(α, β) is
continuous and piecewise smooth. Hence in order to show (2.15) it will be enough
to show that

(2.16) lim sup
t→∞

sup
α,β∈[0,1]

∣∣∣∣ d

dα
Γ̃t(α, β)

∣∣∣∣ < ∞.

Note that

(2.17) Γ̃t(α, β) =
π
√

detQ

4 log t
t−α−β

∫
B̃(tα/2)

du

∫
B̃(tβ/2)

dv Ĝ2t(u, v).

Define the maps f i
t,α : R2 → R2, i = 1, 2, 3, 4 by

(2.18)

f1
t,α(u1, u2) = (u1, t

α/2),

f2
t,α(u1, u2) = (u1,−tα/2),

f3
t,α(u1, u2) = (tα/2, u2),

f4
t,α(u1, u2) = (−tα/2, u2).
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Then we can compute the derivative of Γ̃t(α, β) as

(2.19)

d

dα
Γ̃t(α, β) =

π
√

detQ

4
t−α−β

×
4∑

i=1

∫
B̃(tα/2)

du

∫
B̃(tβ/2)

dv [Ĝ2t(f i
t,α(u), v)− Ĝ2t(u, v)].

Recalling (2.7) we get that there exist constants C ′ and C ′′ such that

(2.20)
∣∣∣∣ d

dα
Γ̃t(α, β)

∣∣∣∣ ≤ C ′ + 4C ′′It(α, β),

where

(2.21) It(α, β) = t−α−β

∫
B̃(tα/2)

du

∫
B̃(tβ/2)

dv

∣∣∣∣∣log
‖f1

t,α(u)− v‖2

‖u− v‖2

∣∣∣∣∣ .

It is an exercise to check that It(α, β) ≤ 100 (see Lemma 2.2 below). Hence we
have shown that

(2.22)
∣∣∣∣ d

dα
Γ̃t(α, β)

∣∣∣∣ ≤ C ′ + 400C ′′ for all t ≥ 1, α, β ∈ [0, 1].

This completes the proof of the tightness and thus of Theorem 1.1

It remains to state and show the two lemmas that we made use of in the preceding
proof.

Lemma 2.1. For all K > 0 there exists a constant C such that for all t ≥ 1 and
k ∈ Z2, k 6= 0, ‖k‖∞ < Kt1/2,

(2.23)
∣∣∣∣At(k)− 1

π
√

detQ
log ‖k‖∞

∣∣∣∣ ≤ C.

Proof. It is well-known that (see [Spi76])

(2.24) A(k) = lim
t→∞

At(k), k ∈ Z2,

exists. A is called the recurrent potential kernel. In [FU96, Theorem 1] it is shown
that there exists a constant c0 such that

(2.25) lim
‖k‖∞→∞

∣∣∣∣A(k)− 1
π
√

detQ
log ‖k‖Q − c0

∣∣∣∣ = 0,

where ‖ · ‖Q is the norm on R2 defined by ‖u‖Q =
√

uT Q−1u. Using the equivalence
of norms, this implies

(2.26) sup
k∈Z2

∣∣∣∣A(k)− 1
π
√

det Q
log ‖k‖∞

∣∣∣∣ < ∞.

We are done if we can show that for some c > 0

(2.27) A(k)−At(k) ≤ c
‖k‖∞√

t
, t ≥ 1, k ∈ Z2.

We proceed similarly as in [Spi76] for the proof of the existence of A. Let φ be the
characteristic function of â, that is

(2.28) φ(θ) =
∑
k∈Z2

exp(i〈θ, k〉)â(0, k), θ ∈ R2.
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Thus, using the Fourier inversion formula, we have

(2.29) ât(0, k) = (2π)−2

∫
[−π,π]2

dθ e−i〈θ,k〉et(φ(θ)−1).

Thus

(2.30)

A(k)−At(k) =
∫ ∞

t

ds âs(0, 0)− âs(0, k)

= (2π)−2

∫
[−π,π]2

dθ

∫ ∞

t

ds
(
1− e−i〈θ,k〉

)
es(φ(θ)−1)

= (2π)−2

∫
[−π,π]2

dθ
1− e−i〈θ,k〉

1− φ(θ)
et(φ(θ)−1).

Now we make use of the fact that (see [Spi76, Proposition 7.5]) there exists a
constant λ > 0 such that the real part of 1−φ(θ) is larger than λ‖θ‖2

2, θ ∈ [−π, π]2.
Hence we get

(2.31)
A(k)−At(k) ≤ ‖k‖2

(2π)2λ

∫
R2

dθ
e−λt‖θ‖22

‖θ‖2

=
1

2
√

πλ3/2

‖k‖2√
t

.

Set c =
√

2/πλ−3/2 to conclude (2.27). �

Finally we show the following lemma. Recall the definition of It(α, β) in (2.21).

Lemma 2.2. For all t ≥ 1 and α, β ∈ [0, 1]

(2.32) It(α, β) ≤ 100.

Proof. Note that, with T = t(β−α)/2,

(2.33) It(α, β) =
1
2

∫
[−1,1]2

du

∫
[−1,1]2

dv

∣∣∣∣log
‖(u1, 1)− Tv‖2

2

‖u− Tv‖2
2

∣∣∣∣ .

Consider first the case T ≤ 1. Here
(2.34)

It(α, β) ≤ −
∫

[−1,1]2
du

∫
[−1,1]2

dv

[
log

(1
8
‖(u1, 1)− Tv‖2

2

)
+ log

(1
8
‖u− Tv‖2

2

)]
≤ −4

∫ 1

−1

du1

∫ 1

−1

dv1 log
(

1
8
(u1 − Tv1)2

)
≤ 16

∫ 2

0

du1 log
(

1
8
u2

)
= 32(2 + log 2) ≤ 100.

For T > 1 the same estimate yields

(2.35)
It(α, β) ≤ −4

∫ 1

−1

du1

∫ 1

−1

dv1 log
(

1
8
(T−1u1 − v1)2

)
≤ 32(2 + log 2) ≤ 100.

This finishes the proof. �
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